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Abstract—Due to the simplicity of their implementations, least
square support vector machine (LS-SVM) and proximal sup-
port vector machine (PSVM) have been widely used in binary
classification applications. The conventional LS-SVM and PSVM
cannot be used in regression and multiclass classification appli-
cations directly, although variants of LS-SVM and PSVM have
been proposed to handle such cases. This paper shows that both
LS-SVM and PSVM can be simplified further and a unified
learning framework of LS-SVM, PSVM, and other regularization
algorithms referred to extreme learning machine (ELM) can be
built. ELM works for the “generalized” single-hidden-layer feed-
forward networks (SLFNs), but the hidden layer (or called feature
mapping) in ELM need not be tuned. Such SLFNs include but are
not limited to SVM, polynomial network, and the conventional
feedforward neural networks. This paper shows the following:
1) ELM provides a unified learning platform with a widespread
type of feature mappings and can be applied in regression and
multiclass classification applications directly; 2) from the opti-
mization method point of view, ELM has milder optimization con-
straints compared to LS-SVM and PSVM; 3) in theory, compared
to ELM, LS-SVM and PSVM achieve suboptimal solutions and
require higher computational complexity; and 4) in theory, ELM
can approximate any target continuous function and classify any
disjoint regions. As verified by the simulation results, ELM tends
to have better scalability and achieve similar (for regression and
binary class cases) or much better (for multiclass cases) generaliza-
tion performance at much faster learning speed (up to thousands
times) than traditional SVM and LS-SVM.

Index Terms—Extreme learning machine (ELM), feature
mapping, kernel, least square support vector machine (LS-SVM),
proximal support vector machine (PSVM), regularization
network.

I. INTRODUCTION

IN THE PAST two decades, due to their surprising classi-
fication capability, support vector machine (SVM) [1] and

its variants [2]–[4] have been extensively used in classification
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applications. SVM has two main learning features: 1) In SVM,
the training data are first mapped into a higher dimensional
feature space through a nonlinear feature mapping function
φ(x), and 2) the standard optimization method is then used
to find the solution of maximizing the separating margin of
two different classes in this feature space while minimizing the
training errors. With the introduction of the epsilon-insensitive
loss function, the support vector method has been extended to
solve regression problems [5].

As the training of SVMs involves a quadratic programming
problem, the computational complexity of SVM training al-
gorithms is usually intensive, which is at least quadratic with
respect to the number of training examples. It is difficult to deal
with large problems using single traditional SVMs [6]; instead,
SVM mixtures can be used in large applications [6], [7].

Least square SVM (LS-SVM) [2] and proximal SVM
(PSVM) [3] provide fast implementations of the traditional
SVM. Both LS-SVM and PSVM use equality optimization
constraints instead of inequalities from the traditional SVM,
which results in a direct least square solution by avoiding
quadratic programming.

SVM, LS-SVM, and PSVM are originally proposed for bi-
nary classification. Different methods have been proposed in or-
der for them to be applied in multiclass classification problems.
One-against-all (OAA) and one-against-one (OAO) methods
are mainly used in the implementation of SVM in multiclass
classification applications [8]. OAA-SVM consists of m SVMs,
where m is the number of classes. The ith SVM is trained
with all of the samples in the ith class with positive labels and
all the other examples from the remaining m − 1 classes with
negative labels. OAO-SVM consists of m(m − 1)/2 SVMs,
where each is trained with the samples from two classes only.
Some encoding schemes such as minimal output coding (MOC)
[9] and Bayesian coding–decoding schemes [10] have been pro-
posed to solve multiclass problems with LS-SVM. Each class
is represented by a unique binary output codeword of m bits. m
outputs are used in MOC-LS-SVM in order to scale up to 2m

classes [9]. Bayes’ rule-based LS-SVM uses m binary LS-SVM
plug-in classifiers with its binary class probabilities inferred in
a second step within the related probabilistic framework [10].
With the prior multiclass probabilities and the posterior binary
class probabilities, Bayes’ rule is then applied m times to infer
posterior multiclass probabilities [10]. Bayes’ rule and different
coding scheme are used in PSVM for multiclass problems [11].

The decision functions of binary SVM, LS-SVM, and PSVM
classifiers have the same form

f(x) = sign

(
N∑

i=1

αitiK(x,xi) + b

)
(1)
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where ti is the corresponding target class label of the training
data xi, αi is the Lagrange multiplier to be computed by the
learning machines, and K(u,v) is a suitable kernel function to
be given by users. From the network architecture point of view,
SVM, LS-SVM, and PSVM can be considered as a specific
type of single-hidden-layer feedforward network (SLFN) (the
so-called support vector network termed by Cortes and Vapnik
[1]) where the output of the ith hidden node is K(x,xi) and the
output weight linking the ith hidden node to the output node
is αiti. The term bias b plays an important role in SVM, LS-
SVM, and PSVM, which produces the equality optimization
constraints in the dual optimization problems of these meth-
ods. For example, the only difference between LS-SVM and
PSVM is on how to use the bias b in the optimization formula
while they have the same optimization constraint, resulting
in different least square solutions. No learning parameter in
the hidden-layer output function (kernel) K(u,v) needs to be
tuned by SVM, LS-SVM, and PSVM, although some user-
specified parameter needs to be chosen a priori.

Extreme learning machine (ELM) [12]–[16] studies a much
wider type of “generalized” SLFNs whose hidden layer need
not be tuned. ELM has been attracting the attentions from more
and more researchers [17]–[22]. ELM was originally developed
for the single-hidden-layer feedforward neural networks [12]–
[14] and then extended to the “generalized” SLFNs which may
not be neuron alike [15], [16]

f(x) = h(x)β (2)

where h(x) is the hidden-layer output corresponding to the
input sample x and β is the output weight vector between the
hidden layer and the output layer. One of the salient features
of ELM is that the hidden layer need not be tuned. Essentially,
ELM originally proposes to apply random computational nodes
in the hidden layer, which are independent of the training
data. Different from traditional learning algorithms for a neural
type of SLFNs [23], ELM aims to reach not only the smallest
training error but also the smallest norm of output weights.
ELM [12], [13] and its variants [14]–[16], [24]–[28] mainly
focus on the regression applications. Latest development of
ELM has shown some relationships between ELM and SVM
[18], [19], [29].

Suykens and Vandewalle [30] described a training method for
SLFNs which applies the hidden-layer output mapping as the
feature mapping of SVM. However, the hidden-layer parame-
ters need to be iteratively computed by solving an optimization
problem (refer to the last paragraph in Section IV-A1 for
details). As Suykens and Vandewalle stated in their work (see
[30, p. 907]), the drawbacks of this method are the following:
the high computational cost and larger number of parameters in
the hidden layer. Liu et al. [18] and Frénay and Verleysen [19]
show that the ELM learning approach can be applied to SVMs
directly by simply replacing SVM kernels with (random) ELM
kernels and better generalization can be achieved. Different
from the study of Suykens and Vandewalle [30] in which the
hidden layer is parametric, the ELM hidden layer used in the
studies of Liu et al. [18] and Frénay and Verleysen [19] is
nonparametric, and the hidden-layer parameters need not be
tuned and can be fixed once randomly generated. Liu et al. [18]
suggest to apply ELM kernel in SVMs and particularly study

PSVM [3] with ELM kernel. Later, Frénay and Verleysen
[19] show that the normalized ELM kernel can also be ap-
plied in the traditional SVM. Their proposed SVM with ELM
kernel and the conventional SVM have the same optimization
constraints (e.g., both inequality constraints and bias b are
used). Recently, Huang et al. [29] further show the following:
1) SVM’s maximal separating margin property and the ELM’s
minimal norm of output weight property are actually consistent,
and with ELM framework, SVM’s maximal separating margin
property and Barlett’s theory on feedforward neural networks
remain consistent, and 2) compared to SVM, ELM requires
fewer optimization constraints and results in simpler implemen-
tation, faster learning, and better generalization performance.
However, similar to SVM, inequality optimization constraints
are used in [29]. Huang et al. [29] use random kernels and
discard the term bias b used in the conventional SVM. However,
no direct relationship has so far been found between the original
ELM implementation [12]–[16] and LS-SVM/PSVM. Whether
feedforward neural networks, SVM, LS-SVM, and PSVM can be
unified still remains open.

Different from the studies of Huang et al. [29], Liu et al.
[18], and Frénay and Verleysen [19], this paper extends ELM
to LS-SVM and PSVM and provides a unified solution for
LS-SVM and PSVM under equality constraints. In particular,
the following contributions have been made in this paper.

1) ELM was originally developed from feedforward neural
networks [12]–[16]. Different from other ELM work in
literature, this paper manages to extend ELM to kernel
learning: It is shown that ELM can use a wide type of fea-
ture mappings (hidden-layer output functions), including
random hidden nodes and kernels. With this extension,
the unified ELM solution can be obtained for feedforward
neural networks, RBF network, LS-SVM, and PSVM.

2) Furthermore, ELM, which is with higher scalability and
less computational complexity, not only unifies different
popular learning algorithms but also provides a unified
solution to different practical applications (e.g., regres-
sion, binary, and multiclass classifications). Different
variants of LS-SVM and SVM are required for different
types of applications. ELM avoids such trivial and tedious
situations faced by LS-SVM and SVM. In ELM method,
all these applications can be resolved in one formula.

3) From the optimization method point of view, ELM and
LS-SVM have the same optimization cost function; how-
ever, ELM has milder optimization constraints compared
to LS-SVM and PSVM. As analyzed in this paper and
further verified by simulation results over 36 wide types
of data sets, compared to ELM, LS-SVM achieves subop-
timal solutions (when the same kernels are used) and has
higher computational complexity. As verified by simula-
tions, the resultant ELM method can run much faster than
LS-SVM. ELM with random hidden nodes can run even up
to tens of thousands times faster than SVM and LS-SVM.
Different from earlier ELM works which do not perform
well in sparse data sets, the ELM method proposed in this
paper can handle sparse data sets well.

4) This paper also shows that the proposed ELM method not
only has universal approximation capability (of approxi-
mating any target continuous function) but also has clas-
sification capability (of classifying any disjoint regions).
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II. BRIEF OF SVMS

This section briefs the conventional SVM [1] and its variants,
namely, LS-SVM [2] and PSVM [3].

A. SVM

Cortes and Vapnik [1] study the relationship between SVM
and multilayer feedforward neural networks and showed that
SVM can be seen as a specific type of SLFNs, the so-called
support vector networks. In 1962, Rosenblatt [31] suggested
that multilayer feedforward neural networks (perceptrons) can
be trained in a feature space Z of the last hidden layer. In this
feature space, a linear decision function is constructed

f(x) = sign

(
L∑

i=1

αizi(x)

)
(3)

where zi(x) is the output of the ith neuron in the last hidden
layer of a perceptron. In order to find an alternative solution
of zi(x), in 1995, Cortes and Vapnik [1] proposed the SVM
which maps the data from the input space to some feature
space Z through some nonlinear mapping φ(x) chosen a priori.
Constrained-optimization methods are then used to find the
separating hyperplane which maximizes the separating margins
of two different classes in the feature space.

Given a set of training data (xi, ti), i = 1, . . . , N , where
xi ∈ Rd and ti ∈ {−1, 1}, due to the nonlinear separability of
these training data in the input space, in most cases, one can
map the training data xi from the input space to a feature space
Z through a nonlinear mapping φ : xi → φ(xi). The distance
between two different classes in the feature space Z is 2/‖w‖.
To maximize the separating margin and to minimize the training
errors, ξi, is equivalent to

Minimize : LPSVM =
1
2
‖w‖2 + C

N∑
i=1

ξi

Subject to : ti (w · φ(xi) + b) ≥ 1 − ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N (4)

where C is a user-specified parameter and provides a tradeoff
between the distance of the separating margin and the training
error.

Based on the Karush–Kuhn–Tucker (KKT) theorem [32], to
train such an SVM is equivalent to solving the following dual
optimization problem:

minimize : LDSVM =
1
2

N∑
i=1

N∑
j=1

titjαiαjφ(xi) · φ(xj)

−
N∑

i=1

αi

subject to :
N∑

i=1

tiαi = 0

0 ≤ αi ≤ C, i = 1, . . . , N (5)

where each Lagrange multiplier αi corresponds to a training
sample (xi, ti). Vectors xi’s for which ti(w · φ(xi) + b) = 1
are termed support vectors [1].

Kernel functions K(u,v) = φ(u) · φ(v) are usually used in
the implementation of SVM learning algorithm. In this case,
we have

minimize : LDSVM =
1
2

N∑
i=1

N∑
j=1

titjαiαjK(xi,xj) −
N∑

i=1

αi

subject to :
N∑

i=1

tiαi =0

0 ≤ αi ≤ C, i=1, . . . , N. (6)

The SVM kernel function K(u,v) needs to satisfy Mercer’s
condition [1]. The decision function of SVM is

f(x) = sign

(
Ns∑
s=1

αstsK(x,xs) + b

)
(7)

where Ns is the number of support vectors xs’s.

B. LS-SVM

Suykens and Vandewalle [2] propose a least square version to
SVM classifier. Instead of the inequality constraint (4) adopted
in SVM, equality constraints are used in the LS-SVM [2].
Hence, by solving a set of linear equations instead of quadratic
programming, one can implement the least square approach
easily. LS-SVM is proven to have excellent generalization
performance and low computational cost in many applications.

In LS-SVM, the classification problem is formulated as

Minimize : LPLS−SVM =
1
2
w · w + C

1
2

N∑
i=1

ξ2
i

Subject to : ti (w · φ(xi)+b)=1 − ξi, i=1, . . . , N.

(8)

Based on the KKT theorem, to train such an LS-SVM is
equivalent to solving the following dual optimization problem:

LDLS−SVM =
1
2
w · w + C

1
2

N∑
i=1

ξ2
i

−
N∑

i=1

αi (ti (w · φ(xi) + b) − 1 + ξi) . (9)

Different from Lagrange multipliers (5) in SVM, in LS-
SVM, Lagrange multipliers αi’s can be either positive or
negative due to the equality constraints used. Based on the
KKT theorem, we can have the optimality conditions of (9) as
follows:

∂LDLS−SVM

∂w
= 0 → w =

N∑
i=1

αitiφ(xi) (10a)
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∂LDLS−SVM

∂b
= 0 →

N∑
i=1

αiti = 0 (10b)

∂LDLS−SVM

∂ξi
= 0 → αi = Cξi, i = 1, . . . , N (10c)

∂LDLS−SVM

∂αi
= 0 → ti (w · φ(xi) + b) − 1 + ξi = 0,

i = 1, . . . , N. (10d)

By substituting (10a)–(10c) into (10d), the aforementioned
equations can be equivalently written as[

0 TT

T I
C + ΩLS−SVM

][
b
α

]
=
[

0 TT

T I
C + ZZT

][
b
α

]
=
[
0
�1

]
(11)

where

Z =

⎡
⎢⎣

t1φ(x1)
...

tNφ(xN )

⎤
⎥⎦

ΩLS−SVM = ZZT. (12)

The feature mapping φ(x) is a row vector,1 T = [t1, t2,
. . . , tN ]T, α = [α1, α2, . . . , αN ]T, and �1 = [1, 1, . . . , 1]T. In
LS-SVM, as φ(x) is usually unknown, Mercer’s condition [33]
can be applied to matrix ΩLS−SVM

ΩLS−SVMi,j = titjφ(xi) · φ(xj) = titjK(xi,xj). (13)

The decision function of LS-SVM classifier is f(x) =
sign(

∑N
i=1 αitiK(x,xi) + b).

The Lagrange multipliers αi’s are proportional to the training
errors ξi’s in LS-SVM, while in the conventional SVM, many
Lagrange multipliers αi’s are typically equal to zero. Compared
to the conventional SVM, sparsity is lost in LS-SVM [9]; this
is true to PSVM [3].

C. PSVM

Fung and Mangasarian [3] propose the PSVM classifier,
which classifies data points depending on proximity to either
one of the two separation planes that are aimed to be pushed
away as far apart as possible. Similar to LS-SVM, the key idea
of PSVM is that the separation hyperplanes are not bounded
planes anymore but “proximal” planes, and such effect is
reflected in mathematical expressions that the inequality con-
straints are changed to equality constraints. Different from LS-
SVM, in the objective formula of linear PSVM, (w · w + b2)
is used instead of w · w, making the optimization problem
strongly convex, and has little or no effect on the original
optimization problem.

1In order to keep the consistent notation and formula formats, similar to LS-
SVM [2], PSVM [3], ELM [29], and TER-ELM [22], feature mappings φ(x)
and h(x) are defined as a row vector while the rest of the vectors are defined
as column vectors in this paper unless explicitly specified.

The mathematical model built for linear PSVM is

Minimize : LPPSVM =
1
2
(w · w + b2) + C

1
2

N∑
i=1

ξ2
i

Subject to : ti(w · xi + b) = 1 − ξi, i = 1, . . . , N. (14)

The corresponding dual optimization problem is

LDPSVM =
1
2
(w · w + b2) + C

1
2

N∑
i=1

ξ2
i

−
N∑

i=1

αi (ti(w · xi + b) − 1 + ξi) . (15)

By applying KKT optimality conditions [similar to
(10a)–(10d)], we have(

I
C

+ ΩPSVM + TTT

)
α =

(
I
C

+ ZZT + TTT

)
α = �1

(16)

where Z = [t1x1, . . . , tNxN ]T and ΩPSVM = ZZT.
Similar to LS-SVM, the training data x can be mapped

from the input space into a feature space φ : x → φ(x),
and one can obtain the nonlinear version of PSVM: Z =
[t1φ(x1)T, . . . , tNφ(xN )T]T. As feature mapping φ(x) is
usually unknown, Mercer’s conditions can be applied to ma-
trix ΩPSVM : ΩPSVMi,j

= titjφ(xi) · φ(xj) = titjK(xi,xj),
which is the same as LS-SVM’s kernel matrix ΩLS−SVM (13).
The decision function of PSVM classifier is f(x) =
sign(

∑N
i=1 αitiK(x,xi) + b).

III. PROPOSED CONSTRAINED-OPTIMIZATION-BASED

ELM

ELM [12]–[14] was originally proposed for the single-
hidden-layer feedforward neural networks and was then ex-
tended to the generalized SLFNs where the hidden layer need
not be neuron alike [15], [16]. In ELM, the hidden layer need
not be tuned. The output function of ELM for generalized
SLFNs (take one output node case as an example) is

fL(x) =
L∑

i=1

βihi(x) = h(x)β (17)

where β = [β1, . . . , βL]T is the vector of the output weights
between the hidden layer of L nodes and the output node and
h(x) = [h1(x), . . . , hL(x)] is the output (row) vector of the
hidden layer with respect to the input x. h(x) actually maps the
data from the d-dimensional input space to the L-dimensional
hidden-layer feature space (ELM feature space) H , and thus,
h(x) is indeed a feature mapping. For the binary classification
applications, the decision function of ELM is

fL(x) = sign (h(x)β) . (18)

Different from traditional learning algorithms [23], ELM
tends to reach not only the smallest training error but also
the smallest norm of output weights. According to Bartlett’s
theory [34], for feedforward neural networks reaching smaller
training error, the smaller the norms of weights are, the better
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generalization performance the networks tend to have. We
conjecture that this may be true to the generalized SLFNs where
the hidden layer may not be neuron alike [15], [16]. ELM is to
minimize the training error as well as the norm of the output
weights [12], [13]

Minimize : ‖Hβ − T‖2 and ‖β‖ (19)

where H is the hidden-layer output matrix

H =

⎡
⎢⎣

h(x1)
...

h(xN )

⎤
⎥⎦ =

⎡
⎢⎣

h1(x1) · · · hL(x1)
...

...
...

h1(xN )
... hL(xN )

⎤
⎥⎦ . (20)

Seen from (18), to minimize the norm of the output weights
‖β‖ is actually to maximize the distance of the separating
margins of the two different classes in the ELM feature space:
2/‖β‖.

The minimal norm least square method instead of the stan-
dard optimization method was used in the original implementa-
tion of ELM [12], [13]

β = H†T (21)

where H† is the Moore–Penrose generalized inverse of matrix
H [35], [36]. Different methods can be used to calculate the
Moore–Penrose generalized inverse of a matrix: orthogonal
projection method, orthogonalization method, iterative method,
and singular value decomposition (SVD) [36]. The orthogonal
projection method [36] can be used in two cases: when HTH
is nonsingular and H† = (HTH)−1HT, or when HHT is

nonsingular and H† = HT(HHT)
−1

.
According to the ridge regression theory [37], one can add

a positive value to the diagonal of HTH or HHT; the resul-
tant solution is stabler and tends to have better generalization
performance. Toh [22] and Deng et al. [21] have studied the
performance of ELM with this enhancement under the Sigmoid
additive type of SLFNs. This section extends such study to gen-
eralized SLFNs with a different type of hidden nodes (feature
mappings) as well as kernels.

There is a gap between ELM and LS-SVM/PSVM, and it is
not clear whether there is some relationship between ELM and
LS-SVM/PSVM. This section aims to fill the gap and build the
relationship between ELM and LS-SVM/PSVM.

A. Sufficient and Necessary Conditions for Universal
Classifiers

1) Universal Approximation Capability: According to ELM
learning theory, a widespread type of feature mappings h(x)
can be used in ELM so that ELM can approximate any con-
tinuous target functions (refer to [14]–[16] for details). That is,
given any target continuous function f(x), there exists a series
of βi’s such that

lim
L→+∞

‖fL(x) − f(x)‖ = lim
L→+∞

∥∥∥∥∥
L∑

i=1

βihi(x) − f(x)

∥∥∥∥∥ = 0.

(22)

With this universal approximation capability, the bias b in the
optimization constraints of SVM, LS-SVM, and PSVM can be

removed, and the resultant learning algorithm has milder op-
timization constraints. Thus, better generalization performance
and lower computational complexity can be obtained. In SVM,
LS-SVM, and PSVM, as the feature mapping φ(xi) may be
unknown, usually not every feature mapping to be used in
SVM, LS-SVM, and PSVM satisfies the universal approxima-
tion condition. Obviously, a learning machine with a feature
mapping which does not satisfy the universal approximation
condition cannot approximate all target continuous functions.
Thus, the universal approximation condition is not only a
sufficient condition but also a necessary condition for a feature
mapping to be widely used. This is also true to classification
applications.

2) Classification Capability: Similar to the classification
capability theorem of single-hidden-layer feedforward neural
networks [38], we can prove the classification capability of
the generalized SLFNs with the hidden-layer mapping h(x)
satisfying the universal approximation condition (22).

Definition 3.1: A closed set is called a region regardless
whether it is bounded or not.

Lemma 3.1 [38]: Given disjoint regions K1,K2, . . . , Km

in Rd and the corresponding m arbitrary real values
c1, c2, . . . , cm, and an arbitrary region X disjointed from any
Ki, there exists a continuous function f(x) such that f(x) = ci

if x ∈ Ki and f(x) = c0 if x ∈ X , where c0 is an arbitrary real
value different from c1, c2, . . . , cp.

The classification capability theorem of Huang et al. [38] can
be extended to generalized SLFNs which need not be neuron
alike.

Theorem 3.1: Given a feature mapping h(x), if h(x)β is
dense in C(Rd) or in C(M), where M is a compact set of
Rd, then a generalized SLFN with such a hidden-layer mapping
h(x) can separate arbitrary disjoint regions of any shapes in Rd

or M .
Proof: Given m disjoint regions K1,K2, . . . , Km in Rd

and their corresponding m labels c1, c2, . . . , cm, according to
Lemma 3.1, there exists a continuous function f(x) in C(Rd)
or on one compact set of Rd such that f(x) = ci if x ∈ Ki.
Hence, if h(x)β is dense in C(Rd) or on one compact set
of Rd, then it can approximate the function f(x), and there
exists a corresponding generalized SLFN to implement such
a function f(x). Thus, such a generalized SLFN can separate
these decision regions regardless of shapes of these regions. �

Seen from Theorem 3.1, it is a necessary and sufficient con-
dition that the feature mapping h(x) is chosen to make h(x)β
have the capability of approximating any target continuous
function. If h(x)β cannot approximate any target continuous
functions, there may exist some shapes of regions which cannot
be separated by a classifier with such feature mapping h(x).
In other words, as long as the dimensionality of the feature
mapping (number of hidden nodes L in a classifier) is large
enough, the output of the classifier h(x)β can be as close to the
class labels in the corresponding regions as possible.

In the binary classification case, ELM only uses a single-
output node, and the class label closer to the output value of
ELM is chosen as the predicted class label of the input data.
There are two solutions for the multiclass classification case.

1) ELM only uses a single-output node, and among the
multiclass labels, the class label closer to the output value
of ELM is chosen as the predicted class label of the
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input data. In this case, the ELM solution to the binary
classification case becomes a specific case of multiclass
solution.

2) ELM uses multioutput nodes, and the index of the output
node with the highest output value is considered as the
label of the input data.

For the sake of readability, these two solutions are analyzed
separately. It can be found that, eventually, the same solution
formula is obtained for both cases.

B. Simplified Constrained-Optimization Problems

1) Multiclass Classifier With Single Output: Since ELM can
approximate any target continuous functions and the output of
the ELM classifier h(x)β can be as close to the class labels
in the corresponding regions as possible, the classification
problem for the proposed constrained-optimization-based ELM
with a single-output node can be formulated as

Minimize : LPELM =
1
2
‖β‖2 + C

1
2

N∑
i=1

ξ2
i

Subject to : h(xi)β = ti − ξi, i = 1, . . . , N. (23)

Based on the KKT theorem, to train ELM is equivalent to
solving the following dual optimization problem:

LDELM =
1
2
‖β‖2 + C

1
2

N∑
i=1

ξ2
i −

N∑
i=1

αi (h(xi)β − ti + ξi)

(24)

where each Lagrange multiplier αi corresponds to the ith
training sample. We can have the KKT optimality conditions
of (24) as follows:

∂LDELM

∂β
= 0 → β =

N∑
i=1

αih(xi)T = HTα (25a)

∂LDELM

∂ξi
= 0 → αi = Cξi, i = 1, . . . , N (25b)

∂LDELM

∂αi
= 0 → h(xi)β − ti + ξi = 0, i = 1, . . . , N

(25c)

where α = [α1, . . . , αN ]T.
2) Multiclass Classifier With Multioutputs: An alternative

approach for multiclass applications is to let ELM have mul-
tioutput nodes instead of a single-output node. m-class of
classifiers have m output nodes. If the original class label is
p, the expected output vector of the m output nodes is ti =

[0, . . . , 0,
p

1, 0, . . . , 0]T. In this case, only the pth element of
ti = [ti,1, . . . , ti,m]T is one, while the rest of the elements are
set to zero. The classification problem for ELM with multiout-
put nodes can be formulated as

Minimize : LPELM =
1
2
‖β‖2 + C

1
2

N∑
i=1

‖ξi‖2

Subject to : h(xi)β = tT
i − ξT

i , i = 1, . . . , N (26)

where ξi = [ξi,1, . . . , ξi,m]T is the training error vector of the
m output nodes with respect to the training sample xi. Based
on the KKT theorem, to train ELM is equivalent to solving the
following dual optimization problem:

LDELM =
1
2
‖β‖2 + C

1
2

N∑
i=1

‖ξi‖2

−
N∑

i=1

m∑
j=1

αi,j

(
h(xi)βj − ti,j + ξi,j

)
(27)

where βj is the vector of the weights linking hidden layer to the
jth output node and β = [β1, . . . ,βm]. We can have the KKT
corresponding optimality conditions as follows:

∂LDELM

∂βj

=0 → βj =
N∑

i=1

αi,jh(xi)T → β=HTα (28a)

∂LDELM

∂ξi

=0 → αi =Cξi, i=1, . . . , N (28b)

∂LDELM

∂αi
=0 → h(xi)β − tT

i + ξT
i =0, i=1, . . . , N

(28c)

where αi = [αi,1, . . . , αi,m]T and α = [α1, . . . ,αN ]T.
It can be seen from (24), (25a)–(25c), (27), and (28a)–(28c)

that the single-output node case considered a specific case of
multioutput nodes when the number of output nodes is set to
one: m = 1. Thus, we only need to consider the multiclass
classifier with multioutput nodes. For both cases, the hidden-
layer matrix H (20) remains the same, and the size of H is only
decided by the number of training samples N and the number
of hidden nodes L, which is irrelevant to the number of output
nodes (number of classes).

C. Equality Constrained-Optimization-Based ELM

Different solutions to the aforementioned KKT conditions
can be obtained based on the concerns on the efficiency in
different size of training data sets.

1) For the Case Where the Number of Training Samples is
Not Huge: In this case, by substituting (28a) and (28b) into
(28c), the aforementioned equations can be equivalently written
as (

I
C

+ HHT

)
α = T (29)

where

T =

⎡
⎢⎣

tT
1
...

tT
N

⎤
⎥⎦ =

⎡
⎣ t11 · · · t1m

...
...

...
tN1 · · · tNm

⎤
⎦ . (30)

From (28a) and (29), we have

β = HT

(
I
C

+ HHT

)−1

T. (31)
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The output function of ELM classifier is

f(x) = h(x)β = h(x)HT

(
I
C

+ HHT

)−1

T. (32)

1) Single-output node (m = 1): For multiclass classifica-
tions, among all the multiclass labels, the predicted class
label of a given testing sample is closest to the output of
ELM classifier. For binary classification case, ELM needs
only one output node (m = 1), and the decision function
of ELM classifier is

f(x) = sign

(
h(x)HT

(
I
C

+ HHT

)−1

T

)
. (33)

2) Multioutput nodes (m > 1): For multiclass cases, the
predicted class label of a given testing sample is the index
number of the output node which has the highest output
value for the given testing sample. Let fj(x) denote
the output function of the jth output node, i.e., f(x) =
[f1(x), . . . , fm(x)]T; then, the predicted class label of
sample x is

label(x) = arg max
i∈{1,...,m}

fi(x). (34)

2) For the Case Where the Number of Training Samples is
Huge: If the number of training data is very large, for example,
it is much larger than the dimensionality of the feature space,
N � L, we have an alternative solution. From (28a) and (28b),
we have

β = CHTξ (35)

ξ =
1
C

(
HT
)†

β. (36)

From (28c), we have

Hβ − T +
1
C

(HT)
†
β = 0

HT

(
H +

1
C

(HT)
†
)

β = HTT

β =
(

I
C

+ HTH
)−1

HTT. (37)

In this case, the output function of ELM classifier is

f(x) = h(x)β = h(x)
(

I
C

+ HTH
)−1

HTT. (38)

1) Single-output node (m = 1): For multiclass classifica-
tions, the predicted class label of a given testing sample
is the class label closest to the output value of ELM clas-
sifier. For binary classification case, the decision function
of ELM classifier is

f(x) = sign

(
h(x)

(
I
C

+ HTH
)−1

HTT

)
. (39)

2) Multioutput nodes (m > 1): The predicted class label of
a given testing sample is the index of the output node
which has the highest output.

Remark: Although the alternative approaches for the differ-
ent size of data sets are discussed and provided separately, in
theory, there is no specific requirement on the size of the train-
ing data sets in all the approaches [see (32) and (38)], and all the
approaches can be used in any size of applications. However,
different approaches have different computational costs, and
their efficiency may be different in different applications. In
the implementation of ELM, it is found that the generalization
performance of ELM is not sensitive to the dimensionality of
the feature space (L) and good performance can be reached
as long as L is large enough. In our simulations, L = 1000 is
set for all tested cases no matter whatever size of the training
data sets. Thus, if the training data sets are very large N � L,
one may prefer to apply solutions (38) in order to reduce
computational costs. However, if a feature mapping h(x) is
unknown, one may prefer to use solutions (32) instead (which
will be discussed later in Section IV).

IV. DISCUSSIONS

A. Random Feature Mappings and Kernels

1) Random Feature Mappings: Different from SVM, LS-
SVM, and PSVM, in ELM, a feature mapping (hidden-layer
output vector) h(x) = [h1(x), . . . , hL(x)] is usually known
to users. According to [15] and [16], almost all nonlinear
piecewise continuous functions can be used as the hidden-node
output functions, and thus, the feature mappings used in ELM
can be very diversified.

For example, as mentioned in [29], we can have

h(x) = [G(a1, b1,x), . . . , G(aL, bL,x)] (40)

where G(a, b,x) is a nonlinear piecewise continuous function
satisfying ELM universal approximation capability theorems
[14]–[16] and {(ai, bi)}L

i=1 are randomly generated according
to any continuous probability distribution. For example, such
nonlinear piecewise continuous functions can be as follows.

1) Sigmoid function

G(a, b,x) =
1

1 + exp (−(a · x + b))
. (41)

2) Hard-limit function

G(a, b,x) =
{

1, if a · x − b ≥ 0
0, otherwise.

(42)

3) Gaussian function

G(a, b,x) = exp
(−b‖x − a‖2

)
. (43)

4) Multiquadric function

G(a, b,x) =
(‖x − a‖2 + b2

)1/2
. (44)

Sigmoid and Gaussian functions are two of the major hidden-
layer output functions used in the feedforward neural networks
and RBF networks2, respectively. Interestingly, ELM with

2Readers can refer to [39] for the difference between ELM and RBF
networks.
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hard-limit [24] and multiquadric functions can have good
generalization performance as well.

Suykens and Vandewalle [30] described a training method for
SLFNs which applies the hidden-layer output mapping as the
feature mapping of SVM. However, different from ELM where
the hidden layer is not parametric and need not be tuned, the
feature mapping of their SVM implementation is parametric,
and the hidden-layer parameters need to be iteratively computed
by solving an optimization problem. Their learning algorithm
was briefed as follows:

minimize : ‖rw‖2 (45)
subject to :
C1 : QP subproblem :

w =
N∑

i=1

α∗
i ti tanh(Vxi + B)

α∗
i = arg max

αi

Q (αi; tanh(Vxi + B))

0 ≤ α∗
i ≤ c

C2 : ‖V(:);B‖2 ≤ γ

C3 : r is radius of smallest ball containing
{tanh(Vxi) + B}N

i=1 (46)

where V denotes the interconnection matrix for the hidden
layer, B is the bias vector, (:) is a columnwise scan of the
interconnection matrix for the hidden layer, and γ is a positive
constant. In addition, Q is the cost function of the correspond-
ing SVM dual problem

max
αi

Q (αi;K(xi,xj))

= −1
2

N∑
i=1

N∑
j=1

titjαiαjK(xi,xj) +
N∑

i=1

αi. (47)

QP subproblems need to be solved for hidden-node parame-
ters V and B, while the hidden-node parameters of ELM are
randomly generated and known to users.

2) Kernels: If a feature mapping h(x) is unknown to users,
one can apply Mercer’s conditions on ELM. We can define a
kernel matrix for ELM as follows:

ΩELM = HHT : ΩELMi,j = h(xi) · h(xj) = K(xi,xj).
(48)

Then, the output function of ELM classifier (32) can be
written compactly as

f(x) =h(x)HT

(
I
C

+ HHT

)−1

T

=

⎡
⎢⎣

K(x,x1)
...

K(x,xN )

⎤
⎥⎦

T(
I
C

+ ΩELM

)−1

T. (49)

In this specific case, similar to SVM, LS-SVM, and PSVM,
the feature mapping h(x) need not be known to users;
instead, its corresponding kernel K(u,v) (e.g., K(u,v) =
exp(−γ‖u − v‖2)) is given to users. The dimensionality L of
the feature space (number of hidden nodes) need not be given
either.

3) Feature Mapping Matrix: In ELM, H =
[h(x1)T, . . . ,h(xN )T]T is called the hidden-layer output
matrix (or called feature mapping matrix) due to the fact
that it represents the corresponding hidden-layer outputs of
the given N training samples. h(xi) denotes the output of
the hidden layer with regard to the input sample xi. Feature
mapping h(xi) maps the data xi from the input space to the
hidden-layer feature space, and the feature mapping matrix H
is irrelevant to target ti. As observed from the essence of the
feature mapping, it is reasonable to have the feature mapping
matrix independent from the target values ti’s. However,
in both LS-SVM and PSVM, the feature mapping matrix
Z = [t1φ(x1)T, . . . , tNφ(xN )T]T (12) is designed to depend
on the targets ti’s of the training samples xi’s.

B. ELM: Unified Learning Mode for Regression, Binary, and
Multiclass Classification

As observed from (32) and (38), ELM has the unified solu-
tions for regression, binary, and multiclass classification. The
kernel matrix ΩELM = HHT is only related to the input data
xi and the number of training samples. The kernel matrix
ΩELM is neither relevant to the number of output nodes m nor
to the training target values ti’s. However, in multiclass LS-
SVM, aside from the input data xi, the kernel matrix ΩM (52)
also depends on the number of output nodes m and the training
target values ti’s.

For the multiclass case with m labels, LS-SVM uses m
output nodes in order to encode multiclasses where ti,j denotes
the output value of the jth output node for the training data
xi [10]. The m outputs can be used to encode up to 2m different
classes. For multiclass case, the primal optimization problem of
LS-SVM can be given as [10]

Minimize : L
(m)
PLS−SVM

=
1
2

m∑
j=1

wj · wj + C
1
2

N∑
i=1

m∑
j=1

ξ2
i,j

Subject to :

⎧⎪⎨
⎪⎩

ti,1 (w1 · φ1(xi) + b1) = 1 − ξi,1

ti,2 (w2 · φ2(xi) + b2) = 1 − ξi,2

. . .
ti,m (wm · φm(xi) + bm) = 1 − ξi,m

i = 1, . . . , N. (50)

Similar to the LS-SVM solution (11) to the binary clas-
sification, with KKT conditions, the corresponding LS-SVM
solution for multiclass cases can be obtained as follows:[

0 TT

T ΩM

] [
bM

αM

]
=
[
0
�1

]
(51)

ΩM = blockdiag

[
Ω(1) +

I
C

, . . . ,Ω(m) +
I
C

]
Ω(j)

kl = tk,jtl,jK
(j)(xk,xl)

bM = [b1, . . . , bm]
αM = [α1,1, . . . , αN,1, . . . , α1,m, . . . , αN,m] (52)

K(j)(xk,xl) = φj(xk) · φj(xl)

= exp

(
−‖xk − xl‖2

σ2
j

)
, j =1, . . . , N.

(53)
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Fig. 1. Scalability of different classifiers: An example on Letter data set. The
training time spent by LS-SVM and ELM (Gaussian kernel) increases sharply
when the number of training data increases. However, the training time spent
by ELM with Sigmoid additive node and multiquadric function node increases
very slowly when the number of training data increases.

Seen from (52), the multiclass LS-SVM actually uses m
binary-class LS-SVM concurrently for m class labels of clas-
sifications; each of the m binary-class LS-SVMs may have
different kernel matrix Ω(j), j = 1, . . . , m. However, in any
cases, ELM has one hidden layer linking to all the m out-
put nodes. In multiclass LS-SVM, different kernels may be
used in each individual binary LS-SVM, and the jth LS-SVM
uses kernel K(j)(u,v). Take Gaussian kernel as an example,
K(j)(u,v) = exp(−(‖xk − xl‖2/σ2

j )); from practical point of
view, it may be time consuming and tedious for users to choose
different kernel parameters σi, and thus, one may set a common
value σi = σ for all the kernels. In multiclass LS-SVM, the
size of ΩM is N × Nm, which is related to the number of
output nodes m. However, in ELM, the size of kernel matrix
ΩELM = HHT is N × N , which is fixed for all the regression,
binary, and multiclass classification cases.

C. Computational Complexity and Scalability

For LS-SVM and PSVM, the main computational cost comes
from calculating the Lagrange multipliers α’s based on (11) and
(16). Obviously, ELM computes α based on a simpler method
(29). More importantly, in large-scale applications, instead of
HHT (size: N × N ), ELM can get a solution based on (37),
where HTH (size: L × L) is used. As in most applications,
the number of hidden nodes L can be much smaller than the
number of training samples: L 
 N , the computational cost
reduces dramatically. For the case L 
 N , ELM can use HTH
(size: L × L). Compared with LS-SVM and PSVM which use
HHT (size: N × N ), ELM has much better computational
scalability with regard to the number of training samples N .
(cf. Fig. 1 for example.)

In order to reduce the computational cost of LS-SVM in
large-scale problems, fixed-size LS-SVM has been proposed
by Suykens et al. [40]–[44]. Fixed-size LS-SVM uses an
M -sample subset of the original training data set (M 
 N)
to compute a finite dimensional approximation φ̂(x) to the
feature map φ(x). However, different from the fixed-size LS-
SVM, if L 
 N , L × L solution of ELM still uses the entire
N training samples. In any case, the feature map h(x) of ELM

is not approximated. In fact, the feature map h(x) of ELM is
randomly generated and independent of the training samples
(if random hidden nodes are used). The kernel matrix of the
fixed-size LS-SVM is built with the subset of size M 
 N ,
while the kernel matrix of ELM is built with the entire data set
of size N in all cases.

D. Difference From Other Regularized ELMs

Toh [22] and Deng et al. [21] proposed two different types of
weighted regularized ELMs.

The total error rate (TER) ELM [22] uses m output nodes
for m class label classification applications. In TER-ELM, the
counting cost function adopts a quadratic approximation. The
OAA method is used in the implementation of TER-ELM in
multiclass classification applications. Essentially, TER-ELM
consists of m binary TER-ELM, where jth TER-ELM is trained
with all of the samples in the jth class with positive labels
and all the other examples from the remaining m − 1 classes
with negative labels. Suppose that there are m+

j number of
positive category patterns and m−

j number of negative category
patterns in the jth binary TER-ELM. We have a positive output
y+

j = (τ + η)1+
j for the jth class of samples and a negative

class output y−
j = (τ − η)1−

j for all the non-jth class of sam-

ples, where 1+
j = [1, . . . , 1]T ∈ Rm+

j and 1−
j = [1, . . . , 1]T ∈

Rm−
j . A common setting for threshold (τ) and bias (η) will be

set for all the m outputs. The output weight vector βj in jth
binary TER-ELM is calculated as

βj =

(
1

m−
j

H−T
j H−

j +
1

m+
j

H+T
j Hj+

)−1

·
(

1
m−

j

H−T
j y−

j +
1

m+
j

H+T
j y+

j

)
(54)

where H+
j and H−

j denote the hidden-layer matrices of the jth
binary TER-ELM corresponding to the positive and negative
samples, respectively.

By defining two class-specific diagonal weighting
matrices W+

j = diag(0, . . . , 0, 1/m+
j , . . . , m+

j ) and
W−

j = diag(1/m−
j , . . . , m−

j , 0, . . . , 0), the solution formula
(54) of TER-ELM can be written as

βj =
(

I
C

+ HT
j WjHj

)−1

HT
j Wjyj (55)

where Wj = W+
j + W−

j and the elements of Hj and yj are
ordered according to the positive and negative samples of the
two classes (jth class samples and all the non-jth class sam-
ples). In order to improve the stability of the learning, I/C is
introduced in the aforementioned formula. If the dimensionality
of the hidden layer is much larger than the number of the
training data (L � N), an alternative solution suggested in
[22] is

βj = HT
j

(
I
C

+ WjHjHT
j

)−1

Wjyj . (56)

Kernels and generalized feature mappings are not considered
in TER-ELM.
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Deng et al. [21] mainly focus on the case where L < N ,
and (37) of ELM and the solution formula of Deng et al.
[21] look similar to each other. However, different from the
ELM solutions provided in this paper, Deng et al. [21] do
not consider kernels and generalized feature mappings in their
weighted regularized ELM. In the proposed solutions of ELM,
L hidden nodes may have a different type of hidden-node output
function hi(x) : h(x) = [h1(x), . . . , hL(x)], while in [21], all
the hidden nodes use the Sigmoid type of activation functions.
Deng et al. [21] do not handle the alternative solution (31).

Seen from (37), multivariate polynomial model [45] can be
considered as a specific case of ELM.

The original solutions (21) of ELM [12], [13], [26], TER-
ELM [22], and the weighted regularized ELM [21] are not
able to apply kernels in their implementations. With the new
suggested approach, kernels can be used in ELM [cf. (49)].

E. Milder Optimization Constraints

In LS-SVM, as the feature mapping φ(x) is usually un-
known, it is reasonable to think that the separating hyperplane
in LS-SVM may not necessarily pass through the origin in the
LS-SVM feature space, and thus, a term bias b is required in
their optimization constraints: ti(w · φ(xi) + b) = 1 − ξi. The
corresponding KKT condition (necessary condition) [cf. (10b)]
for the conventional LS-SVM is

∑N
i=1 αiti = 0. Poggio et al.

[46] prove in theory that the term bias b is not required in
positive definite kernel and that it is not incorrect to have the
term bias b in the SVM model. Different from the analysis
of Poggio et al. [46], Huang et al. [29] show that, from the
practical and universal approximation point of view, the term
bias b should not be given in the ELM learning.

According to ELM theories [12]–[16], almost all nonlinear
piecewise continuous functions as feature mappings can make
ELM satisfy universal approximation capability, and the sep-
arating hyperplane of ELM basically tends to pass through
the origin in the ELM feature space. There is no term bias b
in the optimization constraint of ELM, h(xi)β = ti − ξi, and
thus, different from LS-SVM, ELM does not need to satisfy
the condition

∑N
i=1 αiti = 0. Although LS-SVM and ELM

have the same primal optimization formula, ELM has milder
optimization constraints than LS-SVM, and thus, compared to
ELM, LS-SVM obtains a suboptimal optimization.

The differences and relationships among ELM, LS-
SVM/PSVM, and SVM can be summarized in Table I.

V. PERFORMANCE VERIFICATION

This section compares the performance of different algo-
rithms (SVM, LS-SVM, and ELM) in real-world benchmark
regression, binary, and multiclass classification data sets. In
order to test the performance of the proposed ELM with various
feature mappings in supersmall data sets, we have also tested
ELM on the XOR problem.

A. Benchmark Data Sets

In order to extensively verify the performance of different
algorithms, wide types of data sets have been tested in our
simulations, which are of small sizes, low dimensions, large

TABLE II
SPECIFICATION OF BINARY CLASSIFICATION PROBLEMS

sizes, and/or high dimensions. These data sets include 12 binary
classification cases, 12 multiclassification cases, and 12 regres-
sion cases. Most of the data sets are taken from UCI Machine
Learning Repository [47] and Statlib [48].

1) Binary Class Data Sets: The 12 binary class data sets
(cf. Table II) can be classified into four groups of data:

1) data sets with relatively small size and low dimensions,
e.g., Pima Indians diabetes, Statlog Australian credit,
Bupa Liver disorders [47], and Banana [49];

2) data sets with relatively small size and high dimensions,
e.g., leukemia data set [50] and colon microarray data set
[51];

3) data sets with relatively large size and low dimensions,
e.g., Star/Galaxy-Bright data set [52], Galaxy Dim data
set [52], and mushroom data set [47];

4) data sets with large size and high dimensions, e.g., adult
data set [47].

The leukemia data set was originally taken from a collection
of leukemia patient samples [53]. The data set consists of
72 samples: 25 samples of AML and 47 samples of ALL.
Each sample of leukemia data set is measured over 7129 genes
(cf. Leukemia in Table II). The colon microarray data set
consists of 22 normal and 40 tumor tissue samples. In this data
set, each sample of colon microarray data set contains 2000
genes (cf. Colon in Table II).

Performances of the different algorithms have also been
tested on both leukemia data set and colon microarray data
set after the minimum-redundancy–maximum-relevance fea-
ture selection method [54] being taken (cf. Leukemia (Gene Sel)
and Colon (Gene Sel) in Table II).

2) Multiclass Data Sets: The 12 multiclass data sets (cf.
Table III) can be classified into four groups of data as well:

1) data sets with relatively small size and low dimensions,
e.g., Iris, Glass Identification, and Wine [47];

2) data sets with relatively medium size and medium dimen-
sions, e.g., Vowel Recognition, Statlog Vehicle Silhou-
ettes, and Statlog Image Segmentation [47];

3) data sets with relatively large size and medium dimen-
sions, e.g., letter and shuttle [47];

4) data sets with large size and/or large dimensions, e.g.,
DNA, Satimage [47], and USPS [50].

3) Regression Data Sets: The 12 regression data sets (cf.
Table IV) can be classified into three groups of data:

1) data sets with relatively small size and low dimensions,
e.g., Basketball, Strike [48], Cloud, and Autoprice [47];
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TABLE I
FEATURE COMPARISONS AMONG ELM, LS-SVM, AND SVM

TABLE III
SPECIFICATION OF MULTICLASS CLASSIFICATION PROBLEMS

2) data sets with relatively small size and medium dimen-
sions, e.g., Pyrim, Housing [47], Bodyfat, and Cleve-
land [48];

3) data sets with relatively large size and low dimensions,
e.g., Balloon, Quake, Space-ga [48], and Abalone [47].

Column “random perm” in Tables II–IV shows whether the
training and testing data of the corresponding data sets are
reshuffled at each trial of simulation. If the training and testing
data of the data sets remain fixed for all trials of simulations, it
is marked “No.” Otherwise, it is marked “Yes.”

TABLE IV
SPECIFICATION OF REGRESSION PROBLEMS

B. Simulation Environment Settings

The simulations of different algorithms on all the data sets
except for Adult, Letter, Shuttle, and USPS data sets are carried
out in MATLAB 7.0.1 environment running in Core 2 Quad,
2.66-GHZ CPU with 2-GB RAM. The codes used for SVM and
LS-SVM are downloaded from [55] and [56], respectively.

Simulations on large data sets (e.g., Adult, Letter, Shuttle, and
USPS data sets) are carried out in a high-performance computer
with 2.52-GHz CPU and 48-GB RAM. The symbol “∗” marked
in Tables VI and VII indicates that the corresponding data sets
are tested in such a high-performance computer.
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Fig. 2. Performances of LS-SVM and ELM with Gaussian kernel are sensitive
to the user-specified parameters (C, γ): An example on Satimage data set.
(a) LS-SVM with Gaussian kernel. (b) ELM with Gaussian kernel.

C. User-Specified Parameters

The popular Gaussian kernel function K(u,v) =
exp(−γ‖u − v‖2) is used in SVM, LS-SVM, and ELM.
ELM performance is also tested in the cases of Sigmoid type
of additive hidden node and multiquadric RBF hidden node.

In order to achieve good generalization performance, the cost
parameter C and kernel parameter γ of SVM, LS-SVM, and
ELM need to be chosen appropriately. We have tried a wide
range of C and γ. For each data set, we have used 50 different
values of C and 50 different values of γ, resulting in a total of
2500 pairs of (C, γ). The 50 different values of C and γ are
{2−24, 2−23, . . . , 224, 225}.

It is known that the performance of SVM is sensitive to
the combination of (C, γ). Similar to SVM, the generalization
performance of LS-SVM and ELM with Gaussian kernel de-
pends closely on the combination of (C, γ) as well (see Fig. 2
for the performance sensitivity of LS-SVM and ELM with
Gaussian kernel on the user-specified parameters (C, γ)). The
best generalization performance of SVM, LS-SVM, and ELM
with Gaussian kernel is usually achieved in a very narrow range
of such combinations. Thus, the best combination of (C, γ) of
SVM, LS-SVM, and ELM with Gaussian kernel needs to be
chosen for each data set.

Fig. 3. Performance of ELM (with Sigmoid additive node and multiquadric
RBF node) is not very sensitive to the user-specified parameters (C, L), and
good testing accuracies can be achieved as long as L is large enough: An
example on Satimage data set. (a) ELM with Sigmoid additive node. (b) ELM
with multiquadric RBF node.

For ELM with Sigmoid additive hidden node and multi-
quadric RBF hidden node, h(x) = [G(a1, b1,x), . . . , G(aL,
bL,x)], where G(a, b,x) = 1/(1 + exp(−(a · x + b)))
for Sigmoid additive hidden node or G(a, b,x) =
(‖x − a‖2 + b2)1/2 for multiquadric RBF hidden node.
All the hidden-node parameters (ai, bi)

L
i=1 are randomly

generated based on uniform distribution. The user-specified
parameters are (C,L), where C is chosen from the range
{2−24, 2−23, . . . , 224, 225}. Seen from Fig. 3, ELM can achieve
good generalization performance as long as the number of
hidden nodes L is large enough. In all our simulations on ELM
with Sigmoid additive hidden node and multiquadric RBF
hidden node, L = 1000. In other words, the performance of
ELM with Sigmoid additive hidden node and multiquadric
RBF hidden node is not sensitive to the number of hidden
nodes L. Moreover, L need not be specified by users; instead,
users only need to specify one parameter: C.

Fifty trials have been conducted for each problem. Simula-
tion results, including the average testing accuracy, the corre-
sponding standard deviation (Dev), and the training times, are
given in this section.
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TABLE V
PARAMETERS OF THE CONVENTIONAL SVM, LS-SVM, AND ELM

The user-specified parameters chosen in our simulations are
given in Table V.

D. Performance Comparison on XOR Problem

The performance of SVM, LS-SVM, and ELM has been
tested in the XOR problem which has two training samples in
each class. The aim of this simulation is to verify whether ELM
can handle some rare cases such as the cases with extremely
few training data sets. Fig. 4 shows the boundaries of different
classifiers in XOR problem. It can be seen that, similar to SVM
and LS-SVM, ELM is able to solve the XOR problem well.
User-specified parameters used in this XOR problem are chosen
as follows: (C, γ) for SVM is (210, 20), (C, γ) for LS-SVM is
(24, 214), (C, γ) for ELM with Gaussian kernel is (25, 215),
and (C,L) for ELM with Sigmoid additive hidden node is
(20, 3000).

E. Performance Comparison on Real-World
Benchmark Data sets

Tables VI–VIII show the performance comparison of SVM,
LS-SVM, and ELM with Gaussian kernel, random Sigmoid
hidden nodes, and multiquadric RBF nodes. It can be seen that
ELM can always achieve comparable performance as SVM

Fig. 4. Separating boundaries of different classifiers in XOR problem.
(a) SVM. (b) LS-SVM. (c) ELM (Gaussian kernel). (d) ELM (Sigmoid additive
node).

and LS-SVM with much faster learning speed. Seen from
Tables VI–VIII, different output functions of ELM can be used
in different data sets in order to have efficient implementation
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TABLE VI
PERFORMANCE COMPARISON OF SVM, LS-SVM, AND ELM: BINARY CLASS DATA SETS

TABLE VII
PERFORMANCE COMPARISON OF SVM, LS-SVM, AND ELM: MULTICLASS DATA SETS

in different size of data sets, although any output function can
be used in all types of data sets.

Take Shuttle (large number of training samples) and USPS
(medium size of data set with high input dimensions) data sets
in Table VII as examples.

1) For Shuttle data sets, ELM with Gaussian kernel and
random multiquadric RBF nodes runs 6 and 4466 times
faster than LS-SVM, respectively.

2) For USPS data sets, ELM with Gaussian kernel and
random multiquadric RBF nodes runs 6 and 65 times
faster than LS-SVM, respectively, and runs 1342 and
13 832 times faster than SVM, respectively.

On the other hand, different from LS-SVM which is sensitive
to the combinations of parameters (C, γ), ELM with random
multiquadric RBF nodes is not sensitive to the unique user-
specified parameter C [cf. Fig. 3(b)] and is ease of use in the
respective implementations.

Tables VI–VIII particularly highlight the performance com-
parison between LS-SVM and ELM with Gaussian kernel, and

among the comparisons of these two algorithms, apparently,
better test results are given in boldface. It can be seen that
ELM with Gaussian kernel achieves the same generalization
performance in almost all the binary classification and regres-
sion cases as LS-SVM at much faster learning speeds; however,
ELM usually achieves much better generalization performance
in multiclass classification cases (cf. Table VII) than LS-SVM.

Fig. 5 shows the boundaries of different classifiers in Banana
case. It can be seen that ELM can classify different classes
well.

VI. CONCLUSION

ELM is a learning mechanism for the generalized SLFNs,
where learning is made without iterative tuning. The essence of
ELM is that the hidden layer of the generalized SLFNs should
not be tuned. Different from traditional learning theories on
learning, ELM learning theory [14]–[16] shows that if SLFNs
f(x) = h(x)β with tunable piecewise continuous hidden-layer
feature mapping h(x) can approximate any target continuous
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TABLE VIII
PERFORMANCE COMPARISON OF SVM, LS-SVM, AND ELM: REGRESSION DATA SETS

Fig. 5. Separating boundaries of different classifiers in Banana case. (a) SVM.
(b) LS-SVM. (c) ELM (Gaussian kernel). (d) ELM (Sigmoid additive node).

functions, tuning is not required in the hidden layer then. All
the hidden-node parameters which are supposed to be tuned
by conventional learning algorithms can be randomly generated
according to any continuous sampling distribution [14]–[16].

This paper has shown that both LS-SVM and PSVM can
be simplified by removing the term bias b and the resultant
learning algorithms are unified with ELM. Instead of different
variants requested for different types of applications, ELM can
be applied in regression and multiclass classification appli-
cations directly. More importantly, according to ELM theory
[14]–[16], ELM can work with a widespread type of fea-
ture mappings (including Sigmoid networks, RBF networks,
trigonometric networks, threshold networks, fuzzy inference
systems, fully complex neural networks, high-order networks,
ridge polynomial networks, etc).

ELM requires less human intervention than SVM and LS-
SVM/PSVM. If the feature mappings h(x) are known to users,
in ELM, only one parameter C needs to be specified by users.
The generalization performance of ELM is not sensitive to the
dimensionality L of the feature space (the number of hidden
nodes) as long as L is set large enough (e.g., L ≥ 1000 for

all the real-world cases tested in our simulations). Different
from SVM, LS-SVM, and PSVM which usually request two
parameters (C, γ) to be specified by users, single-parameter
setting makes ELM be used easily and efficiently.

If feature mappings are unknown to users, similar to SVM,
LS-SVM, and PSVM, kernels can be applied in ELM as well.
Different from LS-SVM and PSVM, ELM does not have con-
straints on the Lagrange multipliers αi’s. Since LS-SVM and
ELM have the same optimization objective functions and LS-
SVM has some optimization constraints on Lagrange multipli-
ers αi’s, in this sense, LS-SVM tends to obtain a solution which
is suboptimal to ELM.

As verified by the simulation results, compared to SVM
and LS-SVM ELM achieves similar or better generalization
performance for regression and binary class classification cases,
and much better generalization performance for multiclass clas-
sification cases. ELM has better scalability and runs at much
faster learning speed (up to thousands of times) than traditional
SVM and LS-SVM.

This paper has also shown that, in theory, ELM can approx-
imate any target continuous function and classify any disjoint
regions.
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