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Abstract—In this paper, we develop an online sequential
learning algorithm for single hidden layer feedforward networks
(SLFNs) with additive or radial basis function (RBF) hidden
nodes in a unified framework. The algorithm is referred to as
online sequential extreme learning machine (OS-ELM) and can
learn data one-by-one or chunk-by-chunk (a block of data) with
fixed or varying chunk size. The activation functions for additive
nodes in OS-ELM can be any bounded nonconstant piecewise
continuous functions and the activation functions for RBF nodes
can be any integrable piecewise continuous functions. In OS-ELM,
the parameters of hidden nodes (the input weights and biases of
additive nodes or the centers and impact factors of RBF nodes)
are randomly selected and the output weights are analytically
determined based on the sequentially arriving data. The algorithm
uses the ideas of ELM of Huang et al. developed for batch learning
which has been shown to be extremely fast with generalization
performance better than other batch training methods. Apart
from selecting the number of hidden nodes, no other control
parameters have to be manually chosen. Detailed performance
comparison of OS-ELM is done with other popular sequential
learning algorithms on benchmark problems drawn from the
regression, classification and time series prediction areas. The
results show that the OS-ELM is faster than the other sequential
algorithms and produces better generalization performance.

Index Terms—Extreme learning machine (ELM), growing and
pruning RBF network (GAP-RBF), GGAP-RBF, minimal resource
allocation network (MRAN), online sequential ELM (OS-ELM),
resource allocation network (RAN), resource allocation network
via extended kalman filter (RANEKF), stochastic gradient descent
back-propagation (SGBP).

1. INTRODUCTION

VER THE past two decades, single hidden layer feedfor-
() ward neural networks (SLFNs) have been discussed thor-
oughly by many researchers [1]-[10]. Two main architectures
exist for SLFN, namely: 1) those with additive hidden nodes,
and 2) those with radial basis function (RBF) hidden nodes.
For many of the applications using SLFNSs, training methods are
usually of batch-learning type. Batch learning is usually a time
consuming affair as it may involve many iterations through the
training data. In most applications, this may take several min-
utes to several hours and further the learning parameters (i.e.,
learning rate, number of learning epochs, stopping criteria, and
other predefined parameters) must be properly chosen to en-
sure convergence. Also, whenever a new data is received batch
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learning uses the past data together with the new data and per-
forms a retraining, thus consuming a lot of time. There are many
industrial applications where online sequential learning algo-
rithms are preferred over batch learning algorithms as sequential
learning algorithms do not require retraining whenever a new
data is received.

The back-propagation (BP) algorithm and its variants have
been the backbone for training SLFNs with additive hidden
nodes. It is to be noted that BP is basically a batch learning
algorithm. Stochastic gradient descent BP (SGBP)[11] is one
of the main variants of BP for sequential learning applications.
In SGBP, network parameters are learned at each iteration
on the basis of first-order information of instantaneous value
of the cost function using the current training pattern. SGBP
suffers from slow training error convergence as large number
of training data may be required. To overcome this deficiency,
researchers have proposed to use second order information
in the network parameter learning process, such as the recur-
sive Levenberg—Marquardt algorithm [12], [13]. Even though
second-order methods can shorten the overall convergence
time, they may need more time for processing each data and
this may pose problems in sequential learning if the data arrives
quickly. The network size of SGBP needs to be predefined and
fixed.

Sequential learning algorithms have also become popular for
feedforward networks with RBF nodes. These include resource
allocation network (RAN) [14] and its extensions [15]-[19].
Different from SGBP, the number of RBF hidden nodes in RAN
[14] and its variants [15]-[19] is not predefined. RAN [14] and
RANEKEF [15] determines whether to add a new node based on
the novelty of incoming data. Besides growing nodes based on
the novelty, MRAN [16], [17], GAP-RBF [18], and GGAP-RBF
[19] can also prune insignificant nodes from the networks. RAN,
RANEKEF, and MRAN require many control parameters to be
tuned and in the case of large problems the learning speed may
be slow [18], [19]. Although GAP-RBF [18] and GGAP-RBF
[19] have tried to simplify the sequential learning algorithms
and increase the learning speed, they need the information about
the input sampling distribution or input sampling range, and
the learning may still be slow for large applications. Also, all
the aforementioned sequential learning algorithms handle data
one by one only and cannot handle data on a chunk (block of
data) by chunk basis. It is worth noting that all the BP-based
and RAN-based sequential learning algorithms can only handle
specific types of hidden (additive or RBF) nodes and not both.

In this paper, a sequential learning algorithm referred to as
online sequential extreme learning machine (OS-ELM) that
can handle both additive and RBF nodes in a unified framework
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is introduced. OS-ELM can learn the training data not only
one-by-one but also chunk-by-chunk (with fixed or varying
length) and discard the data for which the training has already
been done. It is a versatile sequential learning algorithm in the
following sense.

1) The training observations are sequentially (one-by-one or
chunk-by-chunk with varying or fixed chunk length) pre-
sented to the learning algorithm.

2) At any time, only the newly arrived single or chunk of ob-
servations (instead of the entire past data) are seen and
learned.

3) A single or a chunk of training observations is discarded
as soon as the learning procedure for that particular (single
or chunk of) observation(s) is completed.

4) The learning algorithm has no prior knowledge as to how
many training observations will be presented.

OS-ELM originates from the batch learning extreme learning
machine (ELM) [20]-[22], [27], [30] developed for SLFNs
with additive and RBF nodes. The performance of ELM has
been evaluated on a number of benchmark problems from
the function regression and classification areas. Results show
that compared with other gradient—descent-based learning
algorithms (including BP algorithms) ELM provides better
generalization performance at higher learning speed and the
learning phase in many applications is completed within sec-
onds [20]-[23].

In OS-ELM with additive nodes, the input weights (of the
connections linking the input nodes to hidden nodes) and biases
are randomly generated and based on this the output weights
are analytically determined. Similarly, in OS-ELM with RBF
nodes, the centers and widths of the nodes are randomly gen-
erated and fixed and then, based on this, the output weights
are analytically determined. Unlike other sequential learning
algorithms which have many control parameters to be tuned,
OS-ELM only requires the number of hidden nodes to be spec-
ified.

The performance of the proposed OS-ELM is evaluated by
comparing it with other sequential learning algorithms such as
SGBP, RAN, RANEKF, MRAN, GAP-RBF, and GGAP-RBF.
Experimental results on benchmark problems from regression,
classification, and time-series prediction problems show that
the proposed OS-ELM produces better generalization per-
formance at a very fast learning speed. For regression, the
benchmark problems considered are three higher dimensional
real-world problems from the University of California at Irvine
(UCI) machine learning repository [24], i.e.: 1) abalone—de-
termination of the age of abalone using the abalone database;
2) Auto-MPG—determination of the fuel consumption of
different models of cars using the Auto-MPG database; 3)
California housing—estimation of the median house prices
in the California area using California housing database. For
classification, the comparison is done based on the following
real world benchmark problems [24], i.e.: 1) image segment
problem, 2) satellite image problem; and 3) DNA Problem. For
time-series prediction, the Mackey—Glass chaotic time series
[25] is used.

The paper is organized as follows. Section II gives a brief
review of the batch ELM. Section III presents the derivation
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of OS-ELM. Section IV highlights the difference between
OS-ELM and other popular sequential learning algorithms
such as SGBP, GAP-RBF, GGAP-RBF, RAN, RANEKF, and
MRAN. Performance evaluation of OS-ELM is shown in
Section V based on the benchmark problems in the areas of re-
gression, classification, and time-series prediction. Conclusions
based on the study are highlighted in Section VI.

II. REVIEW OF ELM

This section briefly reviews the batch ELM developed by
Huang et al. [20]-[22], [27], [30] to provide the necessary back-
ground for the development of OS-ELM in Section III. A brief
mathematical description of SLFN incorporating both additive
and RBF hidden nodes in a unified way is given first.

A. Mathematical Description of Unified SLFN

The output of an SLFN with N hidden nodes (additive or RBF
nodes) can be represented by

o
fr(x) = ZﬂiG(auqu% xeR", a; e R" (1)
=1

where a; and b; are the learning parameters of hidden nodes and
(; the weight connecting the ith hidden node to the output node.
G(a;, b;, x) is the output of the ith hidden node with respect to
the input x. For additive hidden node with the activation func-
tion g(x) : R — R (e.g., sigmoid and threshold), G(a;, b;, x)
is given by

G(a;, b, x) = g(a; - x + b;) b; € R 2)

where a; is the weight vector connecting the input layer to the
sth hidden node and b; is the bias of the ith hidden node. a; - x
denotes the inner product of vectors a; and x in R™.

For RBF hidden node with activation function g(z) : R — R
(e.g., Gaussian), G(a;, b;,x) is given by

b; € Rt 3)

G(a;, bi,x) = g(bi|lx — ai|)

where a; and b; are the center and impact factor of ith RBF
node. R* indicates the set of all positive real values. The RBF
network is a special case of SLFN with RBF nodes in its hidden
layer. Each RBF node has its own centroid and impact factor,
and its output is given by a radially symmetric function of the
distance between the input and the center.

B. ELM

In supervised batch learning, the learning algorithms use a
finite number of input—output samples for training. For /V, arbi-
trary distinct samples (x;,t;) € R™ x R™. Here, x; isan x 1
input vector and t; is a m X 1 target vector. If an SLFN with N
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hidden nodes can approximate these /N samples with zero error,
it then implies that there exist 3;, a;, and b; such that

N
fN(X]):ZﬂLGG}“b“X]):t]? J:17,N (4)

=1

Equation (4) can be written compactly as

HB=T 5)
where
H(ay,...,ag,b1,...,bg,X1,...,XN)
G(a17b17xl) G(aﬂhbﬁﬁxl)
= : : ©6)
G(ay, by, xn) Glag, by, xN) Ny
Bi t
B= : and T =] : . @)
ﬂNT Nxm tq]:f NXxm

H is called the hidden layer output matrix of the network [26];
the ¢th column of H is the 7th hidden node’s output vector with
respect to inputs X, X, ...,Xy and the jth row of H is the
output vector of the hidden layer with respect to input x;.

The ELM algorithm is based on the following two principles.

1) When the number of training samples equals the number
of hidden nodes, i.e., N = N , one can randomly assign
the parameters of hidden nodes (the input weights and bi-
ases for additive hidden nodes or the centers and impact
factors for RBF) and based on this analytically calculate
the output weights by simply inverting H and realize zero
training error. Calculation of the output weights is done in a
single step here. There is no need for any lengthy training
procedure where the network parameters are adjusted in-
teractively with appropriately chosen control parameters
(learning rate and learning epochs, etc.).

2) When the number of training samples is greater than the
number of hidden nodes, i.e., N > N , one can still ran-
domly assign the parameters of hidden nodes and calculate
the output weights by using a pseudoinverse of H to give
a small nonzero training error € > (. Here also the output
weights’ calculation is done in a single step and does not
need lengthy training procedure. These have been formally
stated in the following theorems [27].

Theorem IL1: Let an SLFN with N additive or RBF hidden
nodes and an activation function g(z) which is infinitely dif-
ferentiable in any interval of R be given! Then, for N arbi-
trary distinct input vectors {x; |x; € R",i = 1,... ,N}, and
{(a;,b;)}¥, randomly generated with any continuous proba-
bility distribution, respectively, the hidden layer output matrix
H is invertible with probability one.

Proof: Instead of repeating the rigorous proof provided by
Huang et al. [27], the basic idea of the proof can be summarized
as follows.

IDetail discussions on threshold networks have been given in [22].
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Let us consider a  vector c(b;) =
[G(ai, b, x1),...,G(a;, bj,x5)]",  the ith  column
of H, in Euclidean space R, where b; € (d, f) and (d, f) is
any interval of R. Following the same proof method of Tamura
and Tateishi [28, p. 252] and Huang [26, Th. 2.1], it can be
easily proved that vector ¢ does not belong to any subspace
whose dimension is less than N. Hence, from any interval
(d, f) it is possible to choose N bias values by,...,by for

’

the N hidden neurons such that the corresponding vectors
c(by),c(ba),...,c(by) span RY. This means that for any
randomly generated a; and b; based on any continuous
probability distribution, H can be made full-rank with
probability one. ]

Theorem II.1 implies that the SLFNs with N randomly gen-
erated additive or RBF hidden nodes can learn N distinct sam-
ples with zero error. In real applications, the number of hidden
nodes N will always be less than the number of training sam-
ples N and, hence, the training error cannot be made exactly
zero but can approach a nonzero training error €. The following
theorem formally states this fact [27].

Theorem I1.2: Given any small positive value € > 0 and acti-
vation function g(z) : R — R which is infinitely differentiable
in any interval, there exists N < N such that for N arbitrary
distinct input vectors {x; |x; € R™,i = 1,..., N}, for any
{(a;, b;)}¥, randomly generated according to any continuous
probability distribution [[Hy , xBx ym — TNxml| < € with
probability one.

Proof: According to Theorem II.1, for any N > N, we
have ||Hy . 585 «m — Tnxml|| = 0. Thus, there should exist
N < N which makes Hy o 585 xm — Txm|l <e. ]

According to Theorems II.1 and II.2, the hidden node param-
eters a; and b, (input weights and biases or centers and impact
factors) of SLENs need not be tuned during training and may
simply be assigned with random values. Equation (5) then be-
comes a linear system and the output weights 3 are estimated as

B=H'T ®)

where H' is the Moore—Penrose generalized inverse [29] of
the hidden layer output matrix H. There are several ways to
calculate the Moore—Penrose generalized inverse of a matrix,
including orthogonal projection method, orthogonalization
method, iterative method, and singular value decomposition
(SVD) [29]. The orthogonal projection method can be used
when HTH is nonsingular and H' = (HTH) 'HT. How-
ever, HTH may tend to become singular in some applications.
Thus orthogonal projection method may not perform well in
all applications. The orthogonalization method and iterative
method have limitations since searching and iterations are used.
The SVD can always be used to calculate the Moore—Penrose
generalized inverse of H, and thus is used in the most imple-
mentations of ELM.

It should be noted that the aforementioned theorems assume
the availability of complete training data and use (8) for calcu-
lating the output weights. ELM is thus a batch learning method.
Universal approximation capability of ELM has been analyzed
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in [30] in an incremental method? and it has been shown that
single SLFNs with randomly generated additive or RBF nodes
with a widespread of piecewise continuous activation functions
can universally approximate any continuous target function on
any compact subspace of the Euclidean space R". In the imple-
mentation of ELM, the activation functions for additive nodes
can be any bounded nonconstant piecewise continuous func-
tions and the activation functions for RBF nodes can be any in-
tegrable piecewise continuous functions.

III. OS-ELM

The batch ELM described previously assumes that all the
training data (/N samples) is available for training. However, in
real applications, the training data may arrive chunk-by-chunk
or one-by-one (a special case of chunk) and, hence, the batch
ELM algorithm has to be modified for this case so as to make it
online sequential. o

The output weight matrix B (8 = H'T) given in (8) is a
least-squares solution of (5). Here, we consider the case where
rank(H) = N the number of hidden nodes. Under this condi-
tion, HT of (8) is given by

H' = (HTH)"'HT. 9)
This is also called the left pseudoinverse of H from the fact that
HH= Ig. If HTH tends to become singular, one can make it
nonsingular by choosing smaller network size N or increasing
data number N in the initialization phase of OS-ELM. Substi-
tuting (9) into (8), ,3 becomes

B=HTH)'HTT. (10)
Equation (10) is called the least-squares solution to HB = T.
Sequential implementation of the least-squares solution of (10)
results in the OS-ELM.

Given a chunk of initial training set Xg = {(x;,t;)}°, and
No > N, if one considers using the batch ELM algorithm, one

2Huang et al. [30] learn the data in batch mode but the hidden nodes of the
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needs to consider only the problem of minimizing ||Ho8 — Ty||
where

[ G(al,bl,xl) G(aN,bN,Xl)
H, = : :
_G<a17b17xNo) G(aN7bN7XNo) Nox N
and
t
To=| : (11)
—t,lj\}o Noxm

By Theorem II.1, the solution to minimizing [|[HoB8 — To|| is
given by B(*) = K5 HT'T,, where Ko = H] Hy.

Suppose now that we are given another chunk of data X; =
{(x:,t:) f\i)]-\t(fv-q-ll’ where N; denotes the number of observa-
tions in this chunk; the problem then becomes minimizing

Iw]e-[2]]

where (13), shown at the bottom of the page, holds.
Considering both chunks of training data sets Xy and X1, the
output weight 8 becomes

[Ho

H, 12)

T
'B(l):Kll[gﬂ [%ﬂ (14)
where
| Ho T TH,
BT e

For sequential learning, we have to express ,6(1) as a function
of ﬂ(o), K, Hy, and T and not a function of the data set Ng.
Now K can be written as

H
K= i} B[]

petw_ork grow one by one. However., the sequential learni.ng algorit}_lm propos_ed =K,+ H{H 1 (16)
in this paper has fixed network architecture and learns training data in sequential
mode. and
G(ar, b1, XNy +1) Gag, by, XNy+1)
Hl — . .
_G(alab17XNo+N1) G(aﬁvbﬂf?XNo-i'Nl) N1 xN
and
r +7
tN0+1
T, = (13)
tT
L*No+Ni d Ny xm
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T

H T

[Hﬂ [Tﬂ —H]T,+HI'T,
=KoK;'H! Ty + HI T,
=KoB" +H{ T,

= (K, -HTH,)p” +HIT,

=K, —HTH,8” + HTT,. (17)
Combining (14) and (17), BY) is given by
T
1) _ -1 | Ho To
o x| []
=K YK —HTH, 8" + HTT))
=g + K, '"H](T, - H;8") (18)
where K is given by
K, =K, +HH,. (19)

Generalizing the previous arguments, as new data arrives, a re-
cursive algorithm for updating the least-squares solution, which
is similar to the recursive least-squares algorithm [31], can be
written as follows. When (k + 1)th chunk of data set

S,

Ny = it :
b = (Gt

is received, where k£ > 0 and N1 denotes the number of ob-
servations in the (k + 1)th chunk, we have

Kiyi =K + HkT+1Hk+1
B = M) 4 Kt =T (Thp — He V)
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K,;il rather than Ky, is used to compute S**Y) from

B™ in (20). The update formula for K,;l_l is derived using the
Woodbury formula [32]

_ ~1
K1 = (Kr+Hi; Hipa)
= K;Zl - K}ZIH£+1(I + Hk+1K1:1HE+1)71

x Hy 1 Kt (23)

Let Pryy = K;il, then the equations for updating ,B(k+1)

can be written as

-1
Py =P — P H, (I+H, 1 PH[ ) Hpp Py
I = g 4 Py HE (Thn — Hen ). (24)

Equation (24) gives the recursive formula for ,B(k+1).

Remark 1: From (24), it can be seen that the sequential imple-
mentation of the least-squares solution (10) is similar to recur-
sive least-squares algorithm in [31]. Hence, all the convergence
results of recursive least-squares (RLS) can be applied here.

Remark 2: From the derivation of OS-ELM, it can be
seen that OS-ELM and ELM can achieve the same learning
performance (training error and generalization accuracy)
when rank(Hy) = N. In order to make rank(Hy) = N and
rank(Ko) = N the number of initialization data Ny should not
be less than the hidden node number N.

Now, the OS-ELM can be summarized as follows.

Proposed OS-ELM Algorithm: First, select the type of node
(additive or RBF), the corresponding activation function g, and
the hidden node number N. The data X = {(x;,t;)|x; €
R",t;, € R™,i = 1,...} arrives sequentially.

OS-ELM consists of two phases, namely an initialization
phase and a sequential learning phase. In the initialization
phase, the appropriate matrix Hy is filled up for use in the
learning phase. The number of data required to fill up Hj
should be at least equal to the number of hidden nodes. Ac-
cording to Theorem IL1, rank(Hg) = N if the first N training
data are distinct. For example, if there are ten nodes, ten
training samples are enough. If the first N training data are not
distinct, more training data may be required. However, in most
cases the number of training data required in the initialization
phase can be equal or close to N. Following the initialization
phase, learning phase commences either on a one-by-one or
chunk-by-chunk (with fixed or varying size) basis as desired.
Once a data is used, it is discarded and not used any more.

Step 1) Initialization Phase: Initialize the learning

using a small chunk of initial training data

(20)

where (21), shown at the bottom of the page, and

tT .,
(ijo Nj) +1
Ty = : (22)
tT k41
Z_j:o N; Niy1xXm
both hold.
clantx(sy )
Hpy1 =

N,)

J

G(al, bl, sz-+1

j=0

G(aﬂﬁ bN/ X(Z’f:o N]-)+1)
(21)

G<aN7 bN*, XZ"'JFI Nj)

§=0 Nep1x N
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No = {(xita) i
N = {(x,t;)|x; € R*",t;, € R4

Ny > N.
a) Assign random input weights a; and bias b;
(for additive hidden nodes) or center a; and

impact factor b; (for RBF hidden nodes), ¢ =

from the given training set

—1,...),

1,...,N.
b) Calculate the initial hidden layer output matrix
H,

G(ay,b1,x1) G(ag,bgy,x1)

H,

G(a1,b1,xn,) Glag, by, xn,) Nox

(25)
c) Estimate the initial output weight ,B(O) =
PngTo, where Py (H’(I;Ho)_l and
To = [t1,...,tn,]7%.
d) Setk = 0.
Step 2) Sequential Learning Phase: Present the (k + 1)th
chunk of new observations

YN

N1 = {(Xivti)}i:(zk N;)+1
g=0""

where Vi1 denotes the number of observations in
the (k + 1)th chunk.

a) Calculate the partial hidden layer output matrix
H.; for the (k 4 1)th chunk of data 841, as
shown in (26), at the bottom of the page.

b) SetTk+1 = [t (E;‘_O N_j)—i-l’ ceey

¢) Calculate the output weight g+

1
Py =P, —PH, (I+H, PH, ) Hy Py

ﬂ(k+1) _ ﬂ(k) + Pk+1Hz:+1 (Tk-l—l — Hk-i—lﬂ(k)) . (27)

d) Setk =k + 1. Go to Step 2).

Remark 3: The chunk size does not need to be constant, i.e.,
the number N1 of training observations in the (k+1)th chunk
does not need to be the same as Nj. When the training data is
received one-by-one instead of chunk-by-chunk Ny 11 = 1, (27)

has the following simple format (Sherman—Morrison formula
[32]):
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BETY = g% 1 Py ihyyy (tfﬂ - hkT-+1ﬂ(k)) (28)

where hyiq [G(a1, b1, X(k41)) - Gag, by, Xs1))]s
which is the case analyzed and demonstrated in [33].

Remark 4: In order to handle the case where Hy and/or
I+ Hy P HY 41 are singular or near singular and to make
OS-ELM more robust, ) and P}, (k = 0,...) can be
calculated using SVD as done in all our implementations of
OS-ELM.

Remark 5: If Ng = N, then OS-ELM becomes the batch
ELM. Thus, batch ELM can be considered as a special case of
OS-ELM when all the training observations are present in one
learning iteration.

IV. COMPARISON OF OS-ELM WITH OTHER SEQUENTIAL
LEARNING ALGORITHMS

In this section, the similarities and differences between
OS-ELM and some of the other well-known sequential learning
algorithms are presented.

A. One-by-One Versus Chunk-by-Chunk Learning Modes

In real applications, the data presented to the learning al-
gorithm may be one-by-one or chunk-by-chunk where the
chunk size may vary. Sequential learning algorithms like
SGBP [11], RAN [14], RANEKF [15], MRAN [16], [17],
GAP-RBF [18], GGAP-RBF [19], and OS-ELM can be used
only in the one-by-one mode. SGBP can in principle work for
chunk-by-chunk but difficulty may arise as their learning speed
is too slow for them to complete the first chunk before the
next one arrives. However, SGBP works well for one-by-one
learning mode. OS-ELM works well for one-by-one and also
for chunk-by-chunk learning modes. Further, the chunk can be
varying and need not be fixed.

B. Selection of Parameters

The control parameters used in the sequential learning algo-
rithms RAN, RANEKF, MRAN, GAP-RBF, and GGAP-RBF
include distance parameters (€max;, €min) and impact factor
adjustment parameter ~. Besides these, MRAN uses some
growing and pruning parameters. GAP-RBF and GGAP-RBF
need an estimate of the input sampling distributions or ranges
of sampling areas. (Refer to [19] for details.)

For SGBP, the algorithm control parameters are network size,
learning rate and momentum constant, and they need to be ad-

P — P, - thk+1h£+1Pk justed depending on each problem. The only control parameter
k+1 FTIT T h;‘:+1 Pihyyy to be selected for OS-ELM is the size NV of the network.
G <a17b17x(2_:—0 NJ')+1) “ (aN?bN?X(Zf—O Nj)+1>
o ' ) (26)

)

G <a1, bl., XZL»JH N

j=0

G <aN7bN7XZk+1 N ) }
j=0 "7 Nigy1 XN
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TABLE 1
SPECIFICATION OF BENCHMARK DATA SETS
Dataset # Attributes | # Classes | # Training Data | # Testing Data

Auto-MPG 7 320 72
Abalone 8 3,000 1,177
California Housing 8 - 8,000 12,640

Image Segment 19 7 1,500 810
Satellite Image 36 6 4,435 2,000
DNA 180 3 2,000 1,186

Mackey Glass 4 - 4,000 500

C. Activation Function Types

RAN, RANEKF, MRAN, GAP-RBF, and GGAP-RBF use
only RBF nodes and SGBP uses only additive hidden nodes.
However, OS-ELM can work for both additive and RBF hidden
nodes. Unlike SGBP which is gradient—descent-based and
can only work for differentiable activation function, OS-ELM
can work for nondifferentiable activation functions as well. In
OS-ELM, feedforward networks with additive hidden nodes
and RBF networks have been unified in the sense that they can
be trained sequentially with the same learning algorithm.

V. PERFORMANCE EVALUATION OF OS-ELM

The performance of OS-ELM is evaluated on the benchmark
problems described in Table I which includes three regres-
sion applications (auto-MPG, abalone, California housing)
[24], three classification applications (image segment, satellite
image, DNA) [24] and one time series prediction application
[25]. OS-ELM is first compared with other popular sequential
learning algorithms such as SGBP, RAN, RANEKF, MRAN,
GAP-RBF, and GGAP-RBF in one-by-one learning mode and
then the performance evaluation of OS-ELM in chunk-by-chunk
learning mode is conducted. All the simulations have been con-
ducted in MATLAB 6.5 environment running on an ordinary PC
with 3.0 GHZ CPU. Both the Gaussian RBF activation function
G(a,b,x) = exp(—||x — al|?/b) and the sigmoidal additive
activation function G(a,b,x) = (1)/(1 + exp(—(a-x+b)))
have been used in the simulations of ELM3 and OS-ELM. The
Gaussian RBF activation function is also used in the simula-
tions of RAN, RANEKF, MRAN, GAP-RBF, and GGAP-RBF
and the sigmoidal activation function used in SGBP. In our
simulations, the input and output attributes of regression ap-
plications are normalized into the range [0,1] while the input
attributes of classification applications are normalized into the
range [-1,1]. For both ELM and OS-ELM with additive hidden
nodes, the input weights and biases are randomly chosen from
the range [-1,1]. For both ELM and OS-ELM with RBF hidden
nodes the centers are randomly chosen from the range [-1,1].
The impact width b is chosen from the range [0.2,4.2] for all
problems except for OS-ELM in image segment and DNA
cases. For these two cases in order to make H( nonsingular the
range should be [3, 11] and [20, 60], respectively.

A. Model Selection

The estimation of optimal architecture of the network and the
optimal learning parameters of the learning algorithm is called

3Source codes and some references of ELM can be found at www.ntu.edu.sg/
home/egbhuang/

model selection in the literature. It is problem specific and has
to be predetermined.

For OS-ELM, only the parameter of the optimal number of
hidden units needs to be determined. SGBP requires determina-
tion of the optimal number of the hidden units, learning rate, and
momentum constant. For RAN, RANEKF, MRAN, GAP-RBFEF,
and GGAP-RBEF, control parameters including distance parame-
ters (€max;, Y, €min ), impact factor adjustment parameter ~ have
to be determined. For MRAN, the growing and pruning thresh-
olds need to be determined. For GGAP-RBF, the input sampling
distribution has to be estimated.

For the sake of simplicity, we mainly discuss the procedure of
selecting the optimal number of hidden nodes for the proposed
OS-ELM algorithm and SGBP. The procedure makes use of the
training and validation set methods. The training data set is sep-
arated into two nonoverlapped subsets: One for training and the
other for validation. The optimal number of hidden units is se-
lected as the one which results in the lowest validation error.
An example of model selection of optimal hidden unit number
for OS-ELM with sigmoidal activation function [OS-ELM (sig-
moid)] and SGBP is shown in Fig. 1 in auto-MPG case. In that
figure, the top two curves correspond to training and validation
error (averaged over 50 trials) for SGBP and the bottom two
curves are for OS-ELM (sigmoid). As observed from Fig. 1, the
lowest validation error is achieved when the number of hidden
nodes of OS-ELM (sigmoid) and SGBP are within the ranges
[15, 35] and [13, 24], respectively. Therefore, one can choose
the optimal hidden unit numbers for OS-ELM and SGBP (in
auto-MPG case) from these ranges. It can also be seen that RMS
error curves for OS-ELM are quite smooth compared to SGBP.
It implies that OS-ELM is less sensitive to the network size.
Fig. 2 details such behavior in a single trial for OS-ELM with
25 hidden units and for SGBP with 13 hidden units. In addition,
the number of training data Ny for initialization has been taken
as Ng = N + 50 for regression problems, Ny = N + 100 for
classification problems, and Ny = N + 1500 for times series
problems where N is the network size.

In our paper, the optimal number of hidden units for OS-ELM
and SGBP has been selected for all benchmark problems. The
optimal learning parameters for SGBP and the optimal control
parameters for the RAN-based sequential algorithms are also
selected.

B. Performance Evaluation of OS-ELM: One-by-One Case

We first evaluate and compare the performance of the
proposed OS-ELM with other one-by-one learning mode
algorithms: SGBP, RAN, RANEKF, MRAN GAP-RBF, and
GGAP-RBF. For each problem, the results are averaged over
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Fig. 2. Learning evolution for auto-MPG case.

50 trials. The average training time, the average training and
testing RMSE for regression and time-series prediction appli-
cations and the average training and testing classification rate
for classification problems are shown.

1) Regression Problems: Three benchmark problems have
been studied here, namely: auto-MPG, abalone, and California
housing [24]. The auto-MPG problem is to predict the fuel
consumption (miles per gallon) of different models of cars.
The abalone problem is the estimation of the age of abalone
from the physical measurements and the California housing
problem is to predict the median California housing price

based on the information collected using all the block groups in
California from the 1990 census. For all the problems studied
here, the training and testing data are randomly selected for
each trial.

Table II summarizes the results for regression problems in
terms of the training time, training RMSE, testing RMSE, and
the number of hidden units for each algorithm. The number
of hidden units for OS-ELM (sigmoid), OS-ELM (RBF), and
SGBP was determined based on the model selection procedure
while for RAN, RANEKF, MRAN, and GGAP-RBF it is gen-
erated automatically by the algorithms.
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TABLE II
COMPARISON BETWEEN OS-ELM AND OTHER SEQUENTIAL ALGORITHMS ON REGRESSION APPLICATIONS
Datasets Algorithms Time RMSE # nodes
(seconds) | Training | Testing
OS-ELM (Sigmoid) 0.0444 0.0680 0.0745 25
OS-ELM (RBF) 0.0915 0.0696 0.0759 25
Stochastic BP 0.0875 0.1112 0.1028 13
Auto-MPG GAP-RBF[I8] 0.4520 0.1144 0.1404 3.12
MRAN][18] 1.4644 0.1086 0.1376 4.46
RANEKF[18] 1.0103 0.1088 0.1387 5.14
RANTI8] 0.8042 0.2923 0.3080 4.44
OS-ELM (Sigmoid) 0.5900 0.0754 0.0777 25
OS-ELM (RBF) 1.2478 0.0759 0.0783 25
Stochastic BP 0.7472 0.0996 0.0972 11
Abalone GAP-RBF[18] 83.784 0.0963 0.0966 23.62
MRAN[18] 1500.4 0.0836 0.0837 87.571
RANEKEF[18] 90806 0.0738 0.0794 409
RAN[18] 105.17 0.0931 0.0978 345.58
OS-ELM (Sigmoid) 3.5753 0.1303 0.1332 50
OS-ELM (RBF) 6.9629 0.1321 0.1341 50
California Stochastic BP 1.6866 0.1688 0.1704 9
Housing GGAP-RBF[19] 115.34 0.1417 0.1386 18
MRAN[T9] 2891.5 0.1598 0.1586 64
RANEKF[19] 14181 0.0736 0.1495 200
RAN[19] 3505.2 0.1083 0.1531 3552
TABLE III
COMPARISON BETWEEN OS-ELM AND OTHER SEQUENTIAL ALGORITHMS ON CLASSIFICATION APPLICATIONS
Datasets Algorithms Time Accuracy (%) # nodes
(seconds) | Training | Testing
OS-ELM (Sigmoid) 9.9981 97.00 94.88 180
Image OS-ELM (RBF) 12.197 96.65 94.53 180
Segmentation Stochastic BP 2.5776 83.71 82.55 80
GAP-RBF 17243 - 89.93 4472
MRAN 7004.5 - 93.30 53.1
OS-ELM (Sigmoid) 302.48 91.88 88.93 400
Satellite OS-ELM (RBF) 319.14 93.18 89.01 400
Image Stochastic BP 3.1415 85.23 83.75 25
MRAN 2469.4 - 86.36 20.4
OS-ELM (Sigmoid) 16.742 95.79 9343 200
DNA OS-ELM (RBF) 20.951 96.12 94.37 200
Stochastic BP 1.0840 85.64 82.11 12
MRAN 6079.0 - 86.85 5

As observed from Table II, the performance of OS-ELM
(sigmoid) and OS-ELM (RBF) is similar to each other except
that OS-ELM (RBF) requires twice training time taken by
OS-ELM (sigmoid). Comparing with other algorithms, we
can see that the training time taken by both OS-ELMs and
SGBP is much less than RAN, RANEKF, MRAN, GAP-RBF,
and GGAP-RBF. However, out of all learning algorithms,
OS-ELMs obtained the lowest testing root-mean-square error
(RMSE).

2) Classification Problems: For classification studies, three
benchmark problems have been considered, namely: image seg-
mentation, satellite image, and DNA [24]. The image segmenta-
tion problem consists of a database of images drawn randomly
from seven outdoor images and consists of 2310 regions of 3 x 3
pixels. The aim is to recognize each region into one of the seven
categories, namely: brick facing, sky, foliage, cement, window,
path, and grass using 19 attributes extracted from each square
region. Training and testing data sets are randomly drawn from
the database.

The satellite image problem consists of a database generated
from landsat multispectral scanner. One frame of landsat mul-
tispectral scanner imagery consists of four digital images of the

same scene in four different spectral bands. The database is a
(tiny) subarea of a scene, consisting of 82 x 100 pixels. Each
data in the database corresponds to a region of 3 X 3 pixels. The
aim is to classify of the central pixel in a region into the six cat-
egories, namely: red soil, cotton crop, grey soil, damp grey soil,
soil with vegetation stubble, and very damp grey soil using 36
spectral values for each region. The training and test sets are
fixed according to [24], but the order of training set is randomly
shuffled for each trial.

The database “Primate splice-junction gene sequences
(DNA) with associated imperfect domain theory” is known
as the DNA problem. Splice junctions are points on a DNA
sequence at which “superfluous” DNA is removed during the
process of protein creation in higher organisms. The aim of
the DNA problem is, given a sequence of DNA, to recognize
the boundaries between exons (the parts of the DNA sequence
retained after splicing) and introns (the parts of the DNA
sequence that are spliced out). This consists of three subtasks:
recognizing exon/intron boundaries (referred to as EI sites),
intron/exon boundaries (IE sites), and neither (n sites). A given
sequence of DNA consists of 60 elements (called “nucleotides”
or “base-pairs”). The symbolic variables representing nu-
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TABLE 1V
COMPARISON BETWEEN OS-ELM AND OTHER SEQUENTIAL ALGORITHMS ON MACKEY—GLASS TIME-SERIES APPLICATION
Algorithms Time (seconds) | Training RMSE | Testing RMSE | # nodes
OS-ELM (Sigmoid) 7.1148 0.0177 0.0183 120
OS-ELM (RBF) 10.0603 0.0184 0.0186 120
GGAP-RBF[19] 24.326 0.0700 0.0368 13
MRAN[19] 57.205 0.1101 0.0337 16
RANEKEF[19] 62.674 0.0726 0.0240 23
RAN[19] 58.127 0.1006 0.0466 39
TABLE V
PERFORMANCE COMPARISON OF ELM AND OS-ELM ON REGRESSION APPLICATIONS
Datasets Activation | Algorithms | Learning Time RMSE #
Functions Mode (seconds) [ Training | Testing | nodes
Sigmoid ELM Batch 0.0053 0.0697 0.0694 25
1-by-1 0.0444 0.0680 0.0745 25
OS-ELM 20-by-20 0.0150 0.0684 0.0738 25
Auto - [10,30] 0.0213 0.0680 0.0765 25
MPG RBF ELM Batch 0.0100 0.0691 0.0694 25
1-by-1 0.0915 0.0696 0.0759 25
OS-ELM 20-by-20 0.0213 0.0686 0.0769 25
[10,30] 0.0250 0.0692 0.0746 25
Sigmoid ELM Batch 0.0497 0.0763 0.0771 25
1-by-1 0.5900 0.0754 0.0777 25
OS-ELM 20-by-20 0.1622 0.0755 0.0780 25
Abalone [10,30] 0.2221 0.0757 0.0778 25
RBF ELM Batch 0.0972 0.0761 0.0770 25
1-by-1 1.2478 0.0759 0.0783 25
OS-ELM 20-by-20 0.2253 0.0761 0.0778 25
[10,30] 0.3057 0.0764 0.0779 25
Sigmoid ELM Batch 0.5122 0.1306 0.1333 50
1-by-1 3.5753 0.1303 0.1332 50
OS-ELM 20-by-20 0.6500 0.1297 0.1333 50
California [10,30] 0.8338 0.1302 0.1327 50
Housing RBF ELM Batch 1.0210 0.1292 0.1312 50
1-by-1 6.9629 0.1321 0.1341 50
OS-ELM 20-by-20 0.9794 0.1312 0.1333 50
[10,30] 1.3241 0.1305 0.1326 50

cleotides were replaced by three binary indicator variables,
thus resulting in 180 binary attributes. The training and test
sets are also fixed according to [24], but order of training set is
randomly shuffled for each trial. During our simulations, RAN
and RANEKF produced large number of hidden nodes for
problems, which resulted in system memory overflow or large
training time. It is also found that for these cases, it is difficult to
estimate input sampling distribution for GGAP-RBF algorithm.
For the problem satellite image and DNA, no study has been
done with GAP-RBF due to the complexity in estimating the
input sampling ranges of higher dimensional and binary input
cases. Thus, the results of some RAN-based algorithms could
not be provided for these cases. As observed from Table III,
OS-ELM achieves the best generalization performance with
extremely fast learning speed compared with MRAN. Although
SGBP complete training at fastest speed in these cases, its
generalization performance are much worse than OS-ELM.

3) Time-Series Prediction Problem: The need to time se-
ries prediction arises in many real-world problems such as de-
tecting arrhythmia in heartbeats, stock market indices, etc. One
of the classical benchmark problems in literature is the chaotic
Mackey-Glass differential delay equation given by Mackey and
Glass [25]:

dx(t) ax(t — )

dt 1+ 210(t — 1) 29)

— bx(t)

for a =0.2, b =0.1, and 7 =17. Integrating the equation over
the time interval [¢, ¢t + At] by the trapezoidal rule yields

2 — bAt aAt x(t+ At — 1)
w A = 5 "Wt 33 Ar [T a0+ At 1)
z(t—7)
T T -7
(30)

The time series is generated under the condition (¢ — 7) =0.3
for 0 < ¢t < 7 and predicted with v =50 sample steps ahead
using the four past samples: S,,—v, Sn—w—6, Sn—v—12, and
Sp—v—1s. Hence, the nth input—output instance is

_ T
Xn = [Sn—v7 Sn—v—6; Sn—v—12;, 8n—’u—18]

yn

In this simulation, At = 1 and the training observations is
from ¢ =1 to 4000 and the testing observations from ¢ =4001
to ¢ =4500.

Performance comparison results are given in Table IV. For
this problem, SGBP is excluded because model selection pro-
cedure indicated that it is unsuitable for this application. The
validation errors were high even after trying on a wide number
of hidden units. As observed from Table IV, OS-ELMs achieves
the lowest training and testing RMSE as well as the training
time.

Sn-
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TABLE VI
PERFORMANCE COMPARISON OF ELM AND OS-ELM ON CLASSIFICATION APPLICATIONS
Datasets Activation | Algorithms | Learning Time Accuracy (%) #
Functions Mode (seconds) | Training | Testing | nodes
Sigmoid ELM Batch 0.6384 96.75 95.07 180
OS-ELM 1-by-1 9.9981 97.00 94.88 180
20-by-20 1.0922 97.05 94.60 180
Image [10,30] 0.9881 97.00 94.92 180
Segmentation RBF ELM Batch 1.6300 96.22 9491 180
OS-ELM 1-by-1 12.197 96.65 94.53 180
20-by-20 1.4275 96.70 94.55 180
[10,30] 1.4456 96.75 94.60 180
Sigmoid ELM Batch 7.1816 91.95 88.97 400
OS-ELM 1-by-1 302.48 91.88 88.93 400
20-by-20 21.748 91.92 88.86 400
Satellite [10,30] 21.811 91.93 88.90 400
Image RBF ELM Batch 24.809 92.94 89.03 400
OS-ELM 1-by-1 319.14 93.18 89.01 400
20-by-20 23.433 93.19 89.98 400
[10,30] 24.756 93.16 89.00 400
Sigmoid ELM Batch 0.9748 96.90 94.30 200
OS-ELM I-by-1 16.743 95.79 9343 200
20-by-20 1.7322 95.87 93.46 200
DNA [10,30] 1.7875 95.81 93.42 200
RBF ELM Batch 8.2998 95.87 9233 200
OS-ELM 1-by-1 20.951 96.12 94.37 200
20-by-20 2.6538 96.19 94.30 200
[10,30] 2.3814 96.17 94.25 200
TABLE VII
PERFORMANCE COMPARISON OF ELM AND OS-ELM ON MACKEY-GLASS TIME SERIES-APPLICATION
Activation | Algorithms | Learning Time RMSE #
Functions Mode (seconds) [ Training | Testing | nodes
Sigmoid ELM Batch 1.1664 0.0183 0.0187 120
OS-ELM 1-by-1 7.1184 0.0177 0.0183 120
20-by-20 0.9894 0.0177 0.0183 120
[10,30] 1.0440 0.0185 0.0190 120
RBF ELM Batch 2.1794 0.0185 0.0180 120
OS-ELM I-by-1 10.060 0.0184 0.0186 120
20-by-20 1.5574 0.0183 0.0I86 120
[10,30] 1.7441 0.0184 0.0187 120

C. Performance Evaluation of OS-ELM: Chunk-by-Chunk

Tables V-VII show the performance comparison of ELM
implemented in the chunk-by-chunk learning mode. For the
chunk-by-chunk learning mode, we have considered both a
fixed chunk size of 20 as well as a randomly varying chunk size
between 10-30, indicated by [10,30] in these tables. For the
purpose of comparisons, results of chunk size 1 and also the
chunk size of the entire training set (the original batch ELM)
have also been presented.

For regression problems, it can be seen from Table V that the
accuracies obtained by ELM and OS-ELM when implemented
in different chunk size modes using different activation func-
tions are nearly the same. This is consistent with the earlier the-
oretical analysis in Section III. As far as the training time is con-
cerned, the sequential operation of one-by-one takes the highest
time followed by the chunk of [10, 30], 20x 20, and finally the
batch mode. This implies that the one-by-one sequential mode
takes the longest while batch the shortest time and any chunk
mode operation falls in between. If the chunk size is large, it ap-
proaches the time taken for batch mode operation.

Table VI shows similar results for the classification problems.
The classification accuracies for ELM and OS-ELM using dif-
ferent activation functions and training in the different modes
are similar. It can also be seen that the training time of OS-ELM
reduces with increase in the chunk size. For example, in the case

of satellite image problem, the training time reduces from 300
s (using one-by-one learning mode) to 20 s (using twnty-by-
twenty learning mode). One interesting exception to this is the
DNA problem. For this problem, the training time in the chunk
mode of twnty-by-twenty and [10,30] is even smaller than batch
mode. The reason for this is that: For the batch mode operation,
the training data set is large and needs more RAM space. When
this space exceeds a limit (for example, cache limit), the oper-
ations slow down. This has been verified by the actual experi-
ments executed on higher performance computers.

Table VII shows the comparison results for time series predic-
tion problem. The prediction accuracies for ELM and OS-ELM
using different activation function and training in the different
modes are close to each other. It should also be noted that the
batch mode takes more time than the chunk mode which may
be due to the same reasons as seen in DNA problem.

In summary, the comparison results indicate that OS-ELM
can be implemented to suit the way the data arrives without
sacrificing the accuracy.

VI. CONCLUSION

In this paper, a fast and accurate online sequential learning
algorithm (OS-ELM) has been developed for SLFNs with both
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additive and RBF hidden nodes in a unified way. The activa-
tion functions for additive nodes can be any bounded noncon-
stant piecewise continuous functions and the activation func-
tions for RBF nodes can be any integrable piecewise contin-
uous functions. Also, the algorithm can handle data arriving
or chunk-by-chunk with varying chunk size. Apart from se-
lecting the number of hidden nodes, no other control parameter
has to be chosen. Performance of OS-ELM is compared with
other well-known sequential learning algorithms on real world
benchmark regression, classification and time-series problems.
The results indicate that OS-ELM produces better generaliza-
tion performance with lower training time. Under the mild con-
dition rank(Hy) = N the generalization performance of the
OS-ELM approaches that of the batch ELM.
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